[go: up one dir, main page]

Skip to main content

Biometric Authentication System Using Reduced Joint Feature Vector of Iris and Face

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

Abstract

In this paper, we present the biometric authentication system based on the fusion of two user-friendly biometric modalities: Iris and Face. Using one biometric feature can lead to good results, but there is no reliable way to verify the classification. In order to reach robust identification and verification we are combining two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. This system can operate in two modes: to identify a particular person or to verify a person’s claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, Y., Tan, T., Jain, A.K.: Combining Face and Iris Biometrics for Identity Verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)

    Google Scholar 

  2. Jain, A.K., Bolle, R., Pankanti, S.: Biometrics- Personal Identification in Newroked Society. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  3. Ross, A., Jain, A.K.: Information fusion in biometrics. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, p. 354. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Zuev, Y., Ivanon, S.: The voting as a way to increase the decision reliability. In: Faundations of Information/Decision Fusion with Applications to Engineering Problems, Washington D.C., USA (1996)

    Google Scholar 

  5. Jain, A.K., Prabhakar, S., Chen, S.: Combining multiple matchers for a high security fingerprint verification system. Pattern Recognition Letters 20, 1371–1379 (1999)

    Article  Google Scholar 

  6. Yang, J., Yu, H.: A Direct LDA Algorithm for High-Dimensional Data – with Application to Face Recognition. Pattern Recognition 34(10), 2067–2070 (2001)

    Article  MATH  Google Scholar 

  7. Son, B., Kee, G., Byun, Y., Lee, Y.: Iris Recognition System Using Wavelet Packet and Support Vector Machines. In: Proceeding of International Workshop on Information Security Applications, Jeju, Korea (2003)

    Google Scholar 

  8. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical indenpendence. IEEE Trans. On Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  9. AT&T Laboratories Cambridge. The ORL Database of Faces, http://www.cam-orl.co.uk/facedatabase.html

  10. Laboratories of Intelligent Systems, Institute of Information Science. The IIS Face Database, http://smart.iis.sinica.edu.tw/index.html

  11. Son, B., Ahn, J., Park, J., Lee, Y.: Identification of Humans using Robust Biometrics Features. In: Proceeding of Joint International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, Lisbon, Portugal (2004)

    Google Scholar 

  12. Strang, G., Nguyen, T.Q.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1998)

    Google Scholar 

  13. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Recognition and Machine Intelligence 11(4), 674–693 (1989)

    Article  MATH  Google Scholar 

  14. Swets, D., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(8), 831–836 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Son, B., Lee, Y. (2005). Biometric Authentication System Using Reduced Joint Feature Vector of Iris and Face. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_53

Download citation

  • DOI: https://doi.org/10.1007/11527923_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics