[go: up one dir, main page]

Skip to main content

Robust Nonrigid Multimodal Image Registration Using Local Frequency Maps

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L 2 E (L 2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency.

The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L 2 E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments.

This research was in part supported by RO1-NS 42075.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chui, H., Win, L., Schultz, R., Duncan, J., Rangarajan, A.: A unified non-rigid feature registration method for brain mapping. Medical Image Analysis 7, 112–130 (2003)

    Article  Google Scholar 

  2. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2, 1–36 (1998)

    Article  Google Scholar 

  3. Irani, M., Anandan, P.: Robust Multi-sensor Image Alignment. In: International Conference on Computer Vision, Bombay, India, pp. 959–965 (1998)

    Google Scholar 

  4. Liu, J., Vemuri, B.C., Marroquin, J.L.: Local frequency representations for robust multimodal image registration. IEEE Transactions on Medical Imaging 21, 462–469 (2002)

    Article  Google Scholar 

  5. Mellor, M., Brady, J.M.: Non-rigid multimodal image registration using local phase. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 789–796. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Roche, A., Pennec, X., Malandain, G., Ayache, N.: Rigid registration of 3-d ultrasound with mr images: A new approach combining intensity and gradient information. IEEE Transactions on Medical Imaging 20, 1038–1049 (2001)

    Article  Google Scholar 

  7. Szeliski, R., Coughlan, J.: Spline-based image registration. Int. J. Comput. Vision 22, 199–218 (1997)

    Article  Google Scholar 

  8. Lai, S.H., Fang, M.: Robust and efficient image alignment with spatially-varying illumination models. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 167–172 (1999)

    Google Scholar 

  9. Guimond, A., Roche, A., Ayache, N., Menuier, J.: Three-Dimensional Multimodal Brain Warping Using the Demons Algorithm and Adaptive Intensity Corrections. IEEE Trans. on Medical Imaging 20, 58–69 (2001)

    Article  Google Scholar 

  10. Thirion, J.P.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2, 243–260 (1998)

    Article  Google Scholar 

  11. Viola, P.A., Wells, W.M.: Alignment by maximization of mutual information. In: Fifth Intl. Conference on Computer Vision, MIT, Cambridge (1995)

    Google Scholar 

  12. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multimodality image registration based on information theory. In: Bizais, Y., Barillot, C., Di Paola, R. (eds.) Information Processing in Medical Imaging (1995)

    Google Scholar 

  13. Studholme, C., Hill, D., Hawkes, D.J.: Automated 3D registration of MR and CT images in the head. Medical Image Analysis 1, 163–175 (1996)

    Article  Google Scholar 

  14. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999)

    Article  Google Scholar 

  15. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3d statistical deformation models of the brain using non-rigid registration. IEEE Trans. Med. Imaging 22, 1014–1025 (2003)

    Article  Google Scholar 

  16. Hermosillo, G., Chefd’hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vision 50, 329–343 (2002)

    Article  MATH  Google Scholar 

  17. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Trans. on Medical Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  18. Leventon, M.E., Grimson, W.E.L.: Multi-modal volume registration using joint intensity distributions. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1057–1066. Springer, Heidelberg (1998)

    Google Scholar 

  19. Gaens, T., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid multimodal image registration using mutual information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1099–1106. Springer, Heidelberg (1998)

    Google Scholar 

  20. Servin, M., Quiroga, J.A., Marroquin, J.L.: General n-dimensional quadrature transform and its application to interferogram demodulation. Journal of the Optical Society of America A 20, 925–934 (2003)

    Article  MathSciNet  Google Scholar 

  21. Kwan, C.C., Evans, K., Brainweb, R.: online interface to a 3-d mri simulated brain database (1997)

    Google Scholar 

  22. Stewart, G., Sun, J.: Matrix Perturbation Theory. Academic Press, London (1990)

    MATH  Google Scholar 

  23. Scott, D.: Parametric statistical modeling by minimum integrated square Error. Technometrics 43, 274–285 (2001)

    Article  MathSciNet  Google Scholar 

  24. Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: Non-rigid multimodality image registration. In: Proc. SPIE, Medical Imaging 2001: Image Processing, Bellingham, WA, vol. 4322, pp. 1609–1620 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jian, B., Vemuri, B.C., Marroquin, J.L. (2005). Robust Nonrigid Multimodal Image Registration Using Local Frequency Maps. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_42

Download citation

  • DOI: https://doi.org/10.1007/11505730_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics