Abstract
In feature selection, a part of the features is chosen as a new feature subset, while the rest of the features is ignored. The neglected features still, however, may contain useful information for discriminating the data classes. To make use of this information, the combined classifier approach can be used. In our paper we study the efficiency of combining applied on top of feature selection/extraction. As well, we analyze conditions when combining classifiers on multiple feature subsets is more beneficial than exploiting a single selected feature set.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A.K., Chandrasekaran, B.: Dimensionality and Sample Size Considerations in Pattern Recognition Practice. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 835–855. North-Holland, Amsterdam (1987)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, pp. 400–407. Academic Press, London (1990)
De Veld, D.C.G., Skurichina, M., Witjes, M.J.H., et al.: Autofluorescence and Diffuse Reflectance Spectroscopy for Oral Oncology. Accepted in Lasers in Surgery and Medicine (2005)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Tax, D.M.J., van Breukelen, M., Duin, R.P.W., Kittler, J.: Combining Multiple Classifiers by Averaging or Multiplying? Pattern Recognition 33(9), 1475–1485 (2000)
Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
Freund, Y., Shapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the 13th International Conference on Machine Learning, pp. 148–156 (1996)
Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision Templates for Multiple Classifier Fusion: An Experimental Comparison. Pattern Recognition 34(2), 299–314 (2001)
Kuncheva, L.I.: Combining Pattern Classifiers. In: Methods and Algorithms. Wiley, Chichester (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skurichina, M., Duin, R.P.W. (2005). Combining Feature Subsets in Feature Selection. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_17
Download citation
DOI: https://doi.org/10.1007/11494683_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26306-7
Online ISBN: 978-3-540-31578-0
eBook Packages: Computer ScienceComputer Science (R0)