[go: up one dir, main page]

Skip to main content

SPASM: Segmentation of Sparse and Arbitrarily Oriented Cardiac MRI Data Using a 3D-ASM

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2005)

Abstract

In this paper, a new technique (SPASM) based on a 3D-ASM is presented for automatic segmentation of cardiac MRI image data sets consisting of multiple planes with different orientations, and with large undersampled regions. SPASM was applied to sparsely sampled and radially oriented cardiac LV image data.

Performance of SPASM has been compared to results from other methods reported in literature. The accuracy of SPASM is comparable to these other methods, but SPASM uses considerably less image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloomer, T.N., Plein, S., Radjenovic, A., Higgins, D.M., Jones, T.R., Ridgway, J.P., Sivananthan, M.U.: Cine mri using steady state free precession in the radial long axis orientation is a fast accurate method for obtaining volumetric data of the left ventricle. Journal of Magnetic Resonance Imaging 14, 685–692 (2001)

    Article  Google Scholar 

  2. Cootes, T.F., Cooper, D., Taylor, C.J., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  3. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Patern Analysis and Machine Intelligence 23(6), 681–685 (2001)

    Article  Google Scholar 

  4. van Assen, H.C., Danilouchkine, M.G., Dirksen, M.S., Reiber, J.H.C., Lelieveldt, B.P.F.: A 3d-active shape model driven by fuzzy inference: Application to cardiac ct and mr (submitted)

    Google Scholar 

  5. Kaus, M.R., von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac mri. Medical Image Analysis 8(13), 245–254 (2004)

    Article  Google Scholar 

  6. Mitchell, S.C., Bosch, J.G., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C., Sonka, M.: 3d active appearance models: Segmentation of cardiac mr and ultrasound images. IEEE Transactions on Medical Imaging 21(9), 1167–1178 (2002)

    Article  Google Scholar 

  7. Kelemen, A., Székely, G., Gerig, G.: Elastic model-based segmentation of 3-d neuroradiological data sets. IEEE Transactions on Medical Imaging 18(10), 828–839 (1999)

    Article  Google Scholar 

  8. Rückert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-d statistical deformation models of the brain using nonrigid registration. IEEE Transactions on Medical Imaging 22(8), 1014–1025 (2003)

    Article  Google Scholar 

  9. Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling. IEEE Transactions on Medical Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  10. Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rückert, D.: Construction of a statistical model for cardiac motion analysis using nonrigid image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 599–610. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Lötjönen, J., Kivistö, S., Koikkalainen, J., Smutek, D., Lauerma, K.: Statistical shape model of atria, ventricles and epicardium from short- and long-axis mr images. Medical Image Analysis 8, 371–386 (2004)

    Google Scholar 

  12. Yushkevic, P., Fletcher, P.T., Joshi, S., Thall, A., Pizer, S.M.: Continuous medial representations for geometric object modeling in 2d and 3d. Image and Vision Computing 21(1), 17–27 (2003)

    Article  Google Scholar 

  13. Ordas, S., Boisrobert, L., Bossa, M., Laucelli, M., Huguet, M., Olmos, S., Frangi, A.: Grid-enabled automatic construction of a two-chamber cardiac PDM from a large database of dynamic 3D shapes. IEEE International Symposium of Biomedical Imaging, 416–419 (2004)

    Google Scholar 

  14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions of Systems, Man and Cybernetics 15(1), 116–132 (1985)

    MATH  Google Scholar 

  15. Cootes, T.F., Cooper, D., Taylor, C.J., Graham, J.: A trainable method of parametric shape description. Image and Vision Computing 10(5), 289–294 (1992)

    Article  Google Scholar 

  16. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, U.K., http://www.isbe.man.ac.uk/~bim/Models/app_models.pdf ; Tech. Rep. (March 2004)

  17. Gower, J.: Generalized procrustes analysis. Psychometrika 40, 33–50 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)

    Article  Google Scholar 

  19. Paulsen, R.R., Hilger, K.B.: Shape modeling using markov random field restoration of point correspondences. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum press, New York (1981)

    MATH  Google Scholar 

  21. Ordas, S., van Assen, H.C., Lelieveldt, B.P.F., Frangi, A.F.: Segmentation performance assessment of an autolandmarked statistical shape model (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Assen, H.C. et al. (2005). SPASM: Segmentation of Sparse and Arbitrarily Oriented Cardiac MRI Data Using a 3D-ASM. In: Frangi, A.F., Radeva, P.I., Santos, A., Hernandez, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2005. Lecture Notes in Computer Science, vol 3504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494621_4

Download citation

  • DOI: https://doi.org/10.1007/11494621_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26161-2

  • Online ISBN: 978-3-540-32081-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics