[go: up one dir, main page]

Skip to main content

Binary Lexical Relations for Text Representation in Information Retrieval

  • Conference paper
Natural Language Processing and Information Systems (NLDB 2005)

Abstract

Text representation is crucial for many natural language processing applications. This paper presents an approach to extraction of binary lexical relations (BLR) from Portuguese texts for representing phrasal cohesion mechanisms. We demonstrate how this automatic strategy may be incorporated to information retrieval systems. Our approach is compared to those using bigrams and noun phrases for text retrieval. BLR strategy is shown to improve on the best performance in an experimental information retrieval system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruza, P.D., van der Weide, T.P.: The Modeling and Retrieval of Documents using Index Expressions. ACM SIGIR Forum 25(2), 91–103 (1991)

    Article  Google Scholar 

  2. Fagan, J.L.: Automatic Phrase Indexing for Document Retrieval: An Examination of Syntactic and Non-Syntactic Methods. In: Proceedings of 10th Annual International ACM SIGIR conference, pp. 91–101 (1987)

    Google Scholar 

  3. Gamallo, P., Gonzalez, M., Agustini, A., Lopes, G., Lima, V.L.S.: Mapping Syntactic Dependencies onto Semantic Relations. In: ECAI 2002, Workshop on Natural Language Processing and Machine Learning for Ontology Engineering, Lyon, France, pp. 15–22 (2002)

    Google Scholar 

  4. Gao, J., Nie, J., Wu, G., Cao, G.: Dependence language model for information retrieval. In: Proceedings of 27th Annual International ACM SIGIR conference, pp. 170–177 (2004)

    Google Scholar 

  5. http://www.nilc.icmc.usp.br/lacioweb

  6. Kahane, S., Polguere, A.: Formal Foundation of Lexical Functions. In: ACL 2000 – Workshop on Collocation, Toulouse (2001)

    Google Scholar 

  7. Katz, B., Lin, J.: REXTOR: A System for Generating Relations from Natural Language. In: ACL 2000 – Workshop on Recent Advances in NLP and IR, Hong-Kong, University of Science and Technology (2000)

    Google Scholar 

  8. Lee, C., Lee, G.G.: Probabilistic information retrieval model for a dependency structured indexing system. Information. Processing and Management 41, 161–175 (2005), Available online 19 December 2003

    Google Scholar 

  9. Lin, J.: Indexing and Retrieving Natural Language using Ternary Expressions. Master thesis, Massachusetts Institute of Technology, Cambridge (2001)

    Google Scholar 

  10. Liu, S., Liu, F., Yu, C., Meng, W.: An effective approach to document retrieval via utilizing WordNet and recognizing phrases. In: Proceedings of 27th Annual International ACM SIGIR conference, pp. 266–272 (2004)

    Google Scholar 

  11. Losee, R.M.: Term Dependence: a basis for Luhn and Zipf Models. Journal of the American Society for Information Science 52(12), 1019–1025 (2001)

    Article  Google Scholar 

  12. Matsumura, A., Takasu, A., Adachi, J.: The Effect of Information Retrieval Method Using Dependency Relationship Between Words. RIAO – Multimedia Information Representation and Retrieval (2000)

    Google Scholar 

  13. Miller, D.H., Leek, T., Schwartz, R.: A Hidden Markov Model information retrieval system. In: Proceedings of 22th Annual International ACM SIGIR conference, pp. 214–221 (1999)

    Google Scholar 

  14. Mira Mateus, M.H., Brito, A.M., Duarte, I., Faria, I.H.: Gramática da Língua Portuguesa. Lisboa: Ed. Caminho (2003)

    Google Scholar 

  15. Nallapati, R., Allan, J.: Capturing term dependencies using a language model based on sentence trees. In: Proceedings of the 11th International Conference on Information and Knowledge Management, CIKM, pp. 383–390 (2002)

    Google Scholar 

  16. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24, 513–523 (1988)

    Article  Google Scholar 

  17. Song, F., Croft, B.: A general language model for information retrieval. In: CIKM, pp. 316–321 (1999)

    Google Scholar 

  18. Sparck-Jones, K.: Search Term relevance weighting given little relevance information. Journal of Documentation 35, 30–48 (1979)

    Article  Google Scholar 

  19. Spark-Jones, K., Walker, S., Robertson, S.E.: A Probabilistic Model of Information Retrieval: Development and Comparative Experiments – Part 1 and 2. Information Processing and Management 36(6), 779–840 (2000)

    Article  Google Scholar 

  20. Srikanth, M., Srihari, R.: Biterm language models for document retrieval. In: Proceedings of 25th Annual International ACM SIGIR conference, pp. 425–426 (2002)

    Google Scholar 

  21. Vilares, J., Barcala, F.M., Alonso, M.A.: Using Syntactic dependency-pairs conflation to improve retrieval performance in Spanish. In: Computational Linguistics and Intelligent Text Processing. Lectures Notes in Computer Science, Springer, Heidelberg (2002)

    Google Scholar 

  22. Voorhees, E.M.: Overview of TREC 2003. NIST Special Publication – SP500-255. In: The 12th Text Retrieval Conference, Gaithersburg (2003)

    Google Scholar 

  23. Wondergem, B., van Bommel, P., Weide, T.P.: Nesting and Defoliation of Index Expressions for Information Retrieval. Knowledge and Information Systems 2(1) (2000)

    Google Scholar 

  24. Zhai, C.: Fast statistical parsing of noun phrases of document indexing. In: Proceedings of the fifth conference on Applied natural language processing, pp. 312–319 (1997)

    Google Scholar 

  25. Ziviani, N.: Text Operations. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval, ACM Press, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonzalez, M., Strube de Lima, V.L., Valdeni de Lima, J. (2005). Binary Lexical Relations for Text Representation in Information Retrieval. In: Montoyo, A., Muńoz, R., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2005. Lecture Notes in Computer Science, vol 3513. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11428817_3

Download citation

  • DOI: https://doi.org/10.1007/11428817_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26031-8

  • Online ISBN: 978-3-540-32110-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics