[go: up one dir, main page]

Skip to main content

When Categorial Grammars Meet Regular Grammatical Inference

  • Conference paper
Logical Aspects of Computational Linguistics (LACL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3492))

Abstract

In this paper, we first study the connections between subclasses of AB-categorial grammars and finite state automata. Using this, we explain how learnability results for categorial grammars in Gold’s model from structured positive examples translate into regular grammatical inference results from strings. A closer analysis of the generalization operator used in categorial grammar inference shows that it is strictly more powerful than the one used in usual regular grammatical inference, as it can lead outside the class of regular languages. Yet, we show that the result can still be represented by a new kind of finite-state generative model called a recursive automaton. We prove that every unidirectional categorial grammar, and thus every context-free language, can be represented by such a recursive automaton. We finally identify a new subclass of unidirectional categorial grammars for which learning from strings is not more expensive than learning from structures. A drastic simplification of Kanazawa’s learning algorithm from strings for this class follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D.: Inference of Reversible Languages. Journal of the ACM 3, 741–765 (1982)

    Article  MathSciNet  Google Scholar 

  2. Hillel, Y.B., Gaifman, C., Shamir, E.: On Categorial and Phrase Structure Grammars. Bulletin of the Research Council of Israel 9F (1960)

    Google Scholar 

  3. Besombes, J., Marion, J.-Y.: newblock Learning Reversible Categorial Grammars from Structures newblock proceedings of Categorial Grammars 148–163 (2004)

    Google Scholar 

  4. Buszkowki, W., Penn, G.: Categorial grammars determined from linguistic data by unification. Studia Logica, 431–454 (1990)

    Google Scholar 

  5. Costa Florêncio, C.: Consistent identification in the limit of any of the classes k-valued is NP-hard. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 125–134. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Costa-Florencio, C.: Consistent identification in the limit of rigid grammars from strings is NP-hard. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 49–62. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Denis, F., Lemay, A., Terlutte, A.: Some language classes identifiable in the limit from positive data. In: proceedings of the ICGI: Algorithms and Applications. LNCS (LNAI), vol. 2484, pp. 63–76 (2002)

    Google Scholar 

  8. Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular inference. proceedings of ICGI. LNCS, vol. 862, pp. 25–37 (1994)

    Google Scholar 

  9. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  10. Huet, G., Retore, C.: Survey of a few fundamental representation structures for computational linguistics. In: ESSLI 2002 lecture (2002)

    Google Scholar 

  11. Joshi, A., Schabes, Y.: Tree-Adjoining Grammars. In: Handbook of Formal Languages, vol. 3, pp. 69–120. Springer, Heidelberg (1997)

    Google Scholar 

  12. Kanazawa, M.: Learnable Classes of Categorial Grammars. CSLI Publications, Stanford (1998)

    MATH  Google Scholar 

  13. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In: Advances in Structural and Syntactic Pattern Recognition, vol. 5, pp. 99–108. World Scientific, Singapore (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tellier, I. (2005). When Categorial Grammars Meet Regular Grammatical Inference. In: Blache, P., Stabler, E., Busquets, J., Moot, R. (eds) Logical Aspects of Computational Linguistics. LACL 2005. Lecture Notes in Computer Science(), vol 3492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11422532_20

Download citation

  • DOI: https://doi.org/10.1007/11422532_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25783-7

  • Online ISBN: 978-3-540-31953-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics