[go: up one dir, main page]

Skip to main content

An Efficient and Stable Parallel Solution for Non-symmetric Toeplitz Linear Systems

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2004 (VECPAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3402))

Abstract

In this paper, we parallelize a new algorithm for solving non-symmetric Toeplitz linear systems. This algorithm embeds the Toeplitz matrix in a larger structured matrix, then transforms it into an embedded Cauchy-like matrix by means of trigonometric modifications. Finally, the algorithm applies a modified QR transformation to triangularize the augmented matrix. The algorithm combines e.ciency and stability. It has been implemented using standard tools and libraries, thereby producing a portable code. An extensive experimental analysis has been performed on a cluster of personal computers. Experimental results show that we can obtain efficiencies that are similar to other fast parallel algorithms, while obtaining more accurate results with only one iterative refinement step in the solution.

Supported by Spanish projects CICYT TIC 2000-1683-C03-03 2003-08238-C02-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Freund, R.W.: A look-ahead Schur-type algorithm for solving general Toeplitz systems. Zeitschrift für Angewandte Mathe. und Mechanik 74, T538–T541 (1994)

    Google Scholar 

  2. Chandrasekaran, S., Sayed, A.H.: A fast stable solver for nonsymmetric Toeplitz and quasi-Toeplitz systems of linear equations. SIAM Journal on Matrix Analysis and Applications 19(1), 107–139 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kung, S.Y., Hu, Y.H.: A highly concurrent algorithm and pipelined architecture for solving Toeplitz systems. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP 31(1), 66 (1983)

    Article  MATH  Google Scholar 

  4. Sweet, D.R.: The use of linear-time systolic algorithms for the solution of toeplitz problems. Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University, January 1 (1991); Tue, 23, 15:17:55 GMT (April 1996)

    Google Scholar 

  5. Ipsen, I.: Systolic algorithms for the parallel solution of dense symmetric positive-definite Toeplitz systems. Technical Report YALEU/DCS/RR-539, Department of Computer Science, Yale University (May 1987)

    Google Scholar 

  6. Evans, D.J., Oka, G.: Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications 12(9), 297–303 (1998)

    Google Scholar 

  7. Gohberg, I., Koltracht, I., Averbuch, A., Shoham, B.: Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing 17(4-5), 563–577 (1991)

    Article  MATH  Google Scholar 

  8. Gallivan, K., Thirumalai, S., Van Dooren, P.: On solving block toeplitz systems using a block schur algorithm. In: Chandra, J. (ed.) Proceedings of the 23rd International Conference on Parallel Processing. Algorithms and Applications, vol. 3, pp. 274–281. CRC Press, Boca Raton (1994)

    Google Scholar 

  9. Thirumalai, S.: High performance algorithms to solve Toeplitz and block Toeplitz systems. Ph.d. thesis, Graduate College of the University of Illinois at Urbana-Champaign (1996)

    Google Scholar 

  10. Alonso, P., Badía, J.M., Vidal, A.M.: Parallel algorithms for the solution of toeplitz systems of linear equations. In: Proceedeings of the Fifth International Conference on Parallel Processing and Applied Mathmatics, Czestochowa, Poland. LNCS (2003) (to appear)

    Google Scholar 

  11. Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1995)

    Google Scholar 

  12. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  13. Kailath, T., Sayed, A.H.: Displacement structure: Theory and applications. SIAM Review 37(3), 297–386 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heinig, G., Bojanczyk, A.: Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices. I. transformations. Linear Algebra and its Applications 254(1-3), 193–226 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Potts, D., Steidl, G.: Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems. Linear Algebra and its Applications 281(1-3), 265–292 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Alonso, P., Badía, J.M., Vidal, A.M.: An efficient and stable parallel solution for non–symmetric Toeplitz linear systems. Technical Report II-DSIC-08/2004, Universidad Politécnica de Valencia (2004)

    Google Scholar 

  17. Swarztrauber, P.N.: Vectorizing the FFT’s. Academic Press, New York (1982)

    Google Scholar 

  18. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Computing 1(1), 45–63 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levinson, N.: The Wiener RMS (Root Mean Square) error criterion in filter design and prediction. Journal of Mathematics and Physics 25, 261–278 (1946)

    MathSciNet  Google Scholar 

  20. Bitmead, R.R., Anderson, B.D.O.: Asymptotically fast solution of Toeplitz and related systems of linear equations. Linear Algebra and its Applications 34, 103–116 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bunch, J.R.: Stability of methods for solving Toeplitz systems of equations. SIAM Journal on Scientific and Statistical Computing 6(2), 349–364 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso, P., Badía, J.M., Vidal, A.M. (2005). An Efficient and Stable Parallel Solution for Non-symmetric Toeplitz Linear Systems . In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds) High Performance Computing for Computational Science - VECPAR 2004. VECPAR 2004. Lecture Notes in Computer Science, vol 3402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11403937_51

Download citation

  • DOI: https://doi.org/10.1007/11403937_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25424-9

  • Online ISBN: 978-3-540-31854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics