[go: up one dir, main page]

Skip to main content

Instance Metrics Improvement by Probabilistic Support

  • Conference paper
MICAI 2000: Advances in Artificial Intelligence (MICAI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1793))

Included in the following conference series:

Abstract

The use of distance functions in order to determine nearest instance class at Memory Based Learning methods may be crucial when there are no exact matchings. We add relative information over unknown feature values to improve the information extract on the training instances. An experiment was carried out for Spanish Part-Of-Speech tagging of unknown words finding a better performance with our modified function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brill, E.: Some advances in transformational-based part of speech tagging. In: Proceedings of 12th National Conference on Artificial Intelligence, pp. 722–727 (1994)

    Google Scholar 

  2. Daelemans, W., van den Bosch, A., Weijters, T.: IGTree: Using Trees for Compression and Classification in Lazy Learning Algorithms. In: Aha, D. (ed.) Artificial Intelligence Review, special issue on Lazy Learning (1996)

    Google Scholar 

  3. Daelemans, W., van den Bosch, A., Zavrel, J., Veenstra, J., Buchholz, S., Busser, B.: Rapid development of NLP modules with memory-based learning. In: Proceedings of ELSNET in Wonderland, pp. 105–113. ELSNET, Utrecht, (1998)

    Google Scholar 

  4. Franz, A.: Automatic ambiguity resolution in natural language processing, an empirical approach. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  5. Guiraud, P.: Les caractères statistiques du vucabulaire, Mouton (1954)

    Google Scholar 

  6. Lara, L.F., Ham, C.R., García, M.I.: Investigaciones lingüísticas en lexicografía, Jornadas 1989, El Colegio de México (1979)

    Google Scholar 

  7. Màrquez, L., Rodríguez, H.: Part-of-Speech tagging using decision trees. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 25–36. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  8. José, G., De Alba, M.: Morfología derivativa nominal en el español de México. Ed. UNAM, México (1986)

    Google Scholar 

  9. Rodríguez, S., Carretero, J.: A Formal approach to Spanish morphology: the COES tools (1997), From http://www.datsi.fi.upm.es/coes

  10. Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., Palmucci, J.: Coping with ambiguity and unknown words through probablistic models. In: Computational Linguistics (1993)

    Google Scholar 

  11. Zavrel, J., Daelemans, W.: Recent Advances in Memory-Based Part-of- Speech Tagging. In: VI Simposio Internacional de Comunicación Social, Santiago de Cuba, pp. 590–597 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez, H., Morales, G. (2000). Instance Metrics Improvement by Probabilistic Support. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds) MICAI 2000: Advances in Artificial Intelligence. MICAI 2000. Lecture Notes in Computer Science(), vol 1793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720076_62

Download citation

  • DOI: https://doi.org/10.1007/10720076_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67354-5

  • Online ISBN: 978-3-540-45562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics