4 Conclusion
The following problems are worth studying:
-
Open problems on the Steiner ratio, such as Chung-Gilbert’s conjecture, Graham-Hwang’s conjecture, and Cielick’s conjecture, etc..
-
Find better approximation for network Steiner trees and establish an explicit lower bound for the approximation performance ratio of network Steiner trees.
-
Close the gap between the lower bound and the upper bound for the approximation performance ratio of Steiner minimum arborescence.
-
Find more efficient approximation algorithms for on-line and dynamic Steiner minimum trees and various Steiner tree packing problems.
-
Find good approximation algorithms for multi-weighted Steiner trees and multiphase Steiner trees and study close relationship between multi-weighted Steiner trees, multiphase Steiner trees, and phylogenetic trees.
-
Make clear whether there exists a polynomial-time approximation scheme for class Steiner tree in the special case with the real world background and highway interconnection problem.
-
Close the gap between the lower bound and the upper bound for the approximation performance ratio of bottleneck Steiner tree in the Euclidean plane and make clear whether there exists a polynomial-time approximation scheme for the Steiner tree with minimum number of Steiner points and bounded edge-length.
-
Implement efficient approximation algorithms to meet the requests from industries.
We believe that to attack these new and old open problems new techniques are still required and the Steiner tree is still an attractive topic for researchers in combinatorial optimization and computer science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Aharoni and R. Cohen [1998], Restricted dynamic Steiner trees for scalable multicast in datagram networks, IEEE/ACM Transactions on Networking, 6, no.3, 286–297.
N. Alon and Y. Azar [1993], On-line Steiner trees in the Euclidean plane, Discrete Comput. Geom. 10, no. 2, 113–121.
S. Arora [1996], Polynomial time approximation schemes for Euclidean TSP and other geometric problems, Proceedings of 37th FOCS, 1996, pp. 2–12.
C. Beeri, R. Fagin, D. Maier, M. Yannakakis [1983], On the desirability of acyclic database schemes, J. ACM 30, 479–513.
P. Berman and V. Ramaiyer [1994], Improved approximations for the Steiner tree problem, J. of Algorithm 17, 381–408.
M. Bern and P. Plassmann [1989], The Steiner problem with edge lengths 1 and 2, Information Processing Letters 32, 171–176.
R.S. Booth [1991], The Steiner ratio for five points, Discrete and Computational Geometry.
A. Borchers and D.-Z. Du [1995], The k-Steiner ratio in graphs, in Proceedings of 27th STOC.
A. Borchers, D.-Z. Du, B. Gao and P.-J. Wan [1998], The k-Steiner ratio in the rectilinear plane, Journal of Algorithms, 29, 1–7.
M. Brazil, T. Cole, J.H. Rubinstein, D.A. Thomas, J.F. Weng, and N.C. Wormald [1996], Minimal Steiner trees for 2 k × 2 k square lattices. Journal of Combinatorial Theory, Series A 73, 91–110.
P.J. Campbell [1992], Mathematics, Science and the Future, 1992 Year Book, Encyclopaedia, Britannica, Inc., London, 373–376.
L.L. Cavalli-Sforza and A.W. Edwards [1967], Phylogenetic analysis: models and estimation procedures, Am. J. Human Genetics, 19, 233–257.
S.-K. Chang [1972], The generation of minimal trees with a Steiner topology, J. ACM, 19, 699–711.
M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li [1999], Approximation algorithms for directed Steiner problems. J. Algorithms 33, no. 1, 73–91.
D. Chen, D.-Z. Du, X. Hu, G.-H. Lin, L. Wang, and G. Xue [2000], Approximations for Steiner trees with minimum number of Steiner points, accepted by Journal of Global Optimization.
F.R.K. Chung and E.N. Gilbert [1976], Steiner trees for the regular simplex, Bull. Inst. Math. Acad. Sinica, 4, 313–325.
F.R.K. Chung and R.L. Graham [1985], A new bound for euclidean Steiner minimum trees, Ann. N.Y. Acad. Sci., 440, 328–346.
F.R.K. Chung and F.K. Hwang [1978], A lower bound for the Steiner tree problem, SIAM J.Appl.Math., 34, 27–36.
D. Cieslik [1990], The Steiner ratio of Banach-Minkowski planes, Contemporary Methods in Graph Theory (ed. R. Bodendiek), BI-Wissenschatteverlag, Mannheim, 231–248.
D. Cieslik [1998], Steiner Minimal Trees, Kluwer.
B.A. Cipra [1990], In math, less is more — up to a point, Science, 1081–1082.
B.A. Cipra [1991], Euclidean geometry alive and well in the computer age, SIAM News, 24:1.
D.-Z. Du, B. Gao, R.L. Graham, Z.-C. Liu, and P.-J. Wan [1993], Minimum Steiner trees in normed planes, Discrete and Computational Geometry, 9, 351–370.
D.Z. Du and F.K. Hwang [1983], A new bound for the Steiner ratio, Trans. Amer. Math. Soc. 278, 137–148.
D.Z. Du, F.K. Hwang, and E.Y. Yao [1985], The Steiner ratio conjecture is true for five points, J. Combinatorial Theory, Series A, 38, 230–240.
D.Z. Du and F.K. Hwang [1990], The Steiner ratio conjecture of Gilbert-Pollak is true, Proceedings of National Academy of Sciences, 87, 9464–9466.
D.-Z. Du, F.K. Hwang [1999], and G. Xue: Interconnecting highways, SIAM Discrete Mathematics 12, 252–261.
D.-Z. Du and Z. Miller [1988], Matroids and subset interconnection design, SIAM J. Disc. Math., 1, 416–424.
D.-Z. Du, L.-Q. Pan, and M.-T. Shing [1986], Minimum edge length guillotine rectangular partition, Report 02418-86, Math. Sci. Res. Inst., Univ. California, Berkeley, CA 1986.
D.-Z. Du and P.M. Pardolas [1994], A continuous version of a result of Du and Hwang, Journal of Global Optimization, 5, 127–129.
D.-Z. Du and W.D. Smith [1996], Three disproofs for Gilbert-Pollak conjecture in high dimensional spaces, Journal of Combinatorial Theory, 74, 115–130.
D.Z. Du, Y. Zhang, and Q. Feng [1991], On better heuristic for euclidean Steiner minimum trees, Proceedings 32nd FOCS, 431–439.
P. Duchet [1978], Propriete de Helly et problemes de representation, in: Colloque International Paris-Orsay 260, 117–118.
C. Duin [1991], T. Volgenant, The multi-weighted Steiner tree problem, Annals of Operations Research 33, 451–469.
J. Friedel and P. Widmayer [1989], A simple proof of the Steiner ratio conjecture for five points, SIAM J. Appl. Math. 49, 960–967.
L.R. Foulds and R.L. Graham [1982], The Steiner problem in Phylogeny is NP-complete, Advanced Applied Mathematics, 3, 43–49.
B. Gao, D.-Z. Du, and R.L. Graham [1995], A tight lower bound for the Steiner ratio in Minkowski planes, Discrete Mathematics, 142, 49–63.
M.R. Garey, R.L. Graham and D.S. Johnson [1977], The complexity of computing Steiner minimal trees, SIAM J. Appl. Math., 32, 835–859.
M.R. Garey and D.S. Johnson [1997], The rectilinear Steiner tree is NP-complete, SIAM J. Appl. Math., 32, 826–834.
E.N. Gilbert and H.O. Pollak [1968], Steiner minimal trees, SIAM J. Appl. Math., 16, 1–29.
R.L. Graham and F.K. Hwang [1976], Remarks on Steiner minimal trees, Bull. Inst. Math. Acad. Sinica, 4, 177–182.
F.K. Hwang [1976], On Steiner minimal trees with rectilinear distance, SIAM J. Appl. Math., 30, 104–114.
F.K. Hwang [1990], Flag down but sail up, Mathematical Dissemination 12:2, 5–7.
F.K. Hwang, D.S. Rechards, and P. Winter [1992], Steiner tree problems North-Holland, Amsterdam.
A. Iwainsky [1985], Optimal trees-a short overview on problem formulations, in A. Iwainsky (ed.) Optimization of Connections Structures in Graphs, CICIP, East Berlin, GDR, 121–133.
E. Ihler, G. Reich, and P. Widmayer [1999], Class Steiner trees and VLSI-design, Discrete Applied Mathematics 90, 173–194.
T. Jiang, E.L. Lawler, and L. Wang [1994], Aligning sequences via an evolutionary tree: complexity and approximation, Proceedings of 26th STOC.
T. Jiang and L. Wang [1994], An approximation scheme for some Steiner tree problems in the plane, LNCS 834, 414–422.
R.M. Karp [1972], Reducibility among combinatorial problems, in R.E. Miller and J.W. Tatcher (ed.), Complexity of Computer Computation, Plenum Press, New York, 85–103.
M. Karpinski and A.Z. Zelikovsky [1997], New approximation algorithms for the Steiner tree problems, Journal of Combinatorial Optimization, 1, 47–65.
G. Kolata [1990], Solution to old puzzle: how short a shortcut? New York Times October 30.
P. Korthonen [1979], An algorithm for transforming a spanning tree into a Steiner tree, Survey of Mathematical Programming (2), North-Holland, 349–357.
L. Kou and K. Makki [1987], An even faster approximation algorithm for the Steiner tree problem in graph, Congressus Numerantium 59, 147–154.
C.-S. Li, F.F. Tong, C.J. Georgiou and M. Chen [1994], Gain equalization in metropolitan and wide area optical networks using optical amplifiers, Proc. IEEE INFOCOM’ 94, pp. 130–137, June.
G.-H. Lin and G.L. Xue [1999], Steiner tree problem with minimum number of Steiner points and bounded edge-length, Information Processing Letters, 69, 53–57.
B. Lu, J. Gu, X. Hu, and E. Shragowitz [2000], Wire segmenting for buffer insertion based on RSTP-MSP, accepted by Theoretical Computer Science.
B. Lu and L. Ruan [2000], Polynomial-time approximation scheme for rectilinear Steiner arborescence problem, Journal of Combinatorial Optimization, 357–363.
M.S. Manase, L.A. McGeoch, and D.D. Sleator [1988], Competitive algorithms for on-line problems, Proc. of 20th STOC, Chacago.
J. S. B. Mitchell [1996], Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric k-MST problem, Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, 402–408.
J. S. B. Mitchell [1997], Guillotine subdivisions approximate polygonal subdivisions: Part III-Faster polynomial-time approximation scheme for geometric network optimization,” Proc. ninth Canadian conference on computational geometry, 229–232.
J. S. B. Mitchell [1999], Guillotine subdivisions approximate polygonal subdivisions: Part II-A simple polynomial-time approximation scheme for geometric k-MST, TSP, and related problems, SIAM J. Comp. 28, 1298–1309.
J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala [1999], A constant-factor approximation for the geometric k-MST problem in the plane, SIAM J. Comp. 28, 771–781.
I. Peterson [1990], Proven path for limiting shortest shortcut, Science News, December 22 & 29, 389.
H.O. Pollak [1978], Some remarks on the Steiner problem, J. Combinatorial Theory, Ser.A, 24, 278–295.
E. Prisner [1992], Two algorithms for the subset interconnection design, Networks 22, 385–395.
W.R. Pulleyblank [1995], Two Steiner tree packing problems, 27th STOC, pp.383–387.
B. Ramamurthy, J. Iness and B. Mukherjee [1997], Minimizing the number of optical amplifiers needed to support a multi-wavelength optical LAN/MAN, Proc. IEEE INFOCOM’ 97, pp. 261–268, April.
S.K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor [1992], The rectilinear Steiner arborescence problem, Algorithmica 7, 277–288.
J.H. Rubinstein and D.A. Thomas [1991], The Steiner ratio conjecture for six points, J. Combinatoria Theory, Ser.A, 58, 54–77.
A. Sangalli [1991], Mathematicians learn how to join the dots, New Scientists April, 22.
P. Schreiber [1986], On the history of the so-called Steiner weber problem, Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald, Math.-nat.wiss. Reihe, 35, no.3.
W. Shi and C. Su [2000], The rectilinear Steiner arborescence problem is NP-complete, Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA).
D.D. Sleator and R.E. Tarjan [1985], Amortized efficiency of list uptate and paging rules, Commications of ACM 28, 202–208.
J.M. Smith and J.S. Liebman [1979], Steiner trees, Steiner circuits and interference problem in building design, Engineering Optimization, 4, 15–36.
J.M. Smith, D.T. Lee, and J.S. Liebman [1981], An O(N log N) heuristic for Steiner minimal tree problems in the Euclidean metric, Networks, 11, 23–39.
W.D. Smith [1992], How to find Steiner minimal trees in Euclidean d-space, Algorithmica, 7.
W.D. Smith and P.W. Shor [1992], Steiner tree problems, Algorithmica, 7, 329–332.
I. Stewart [1991], Trees, telephones and tiles, New Scientist 16 (1991) 26–29.
R.E. Tarjan and M. Yannakakis [1984], Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13, 566–579.
Y.T. Tsai, C.Y. Tang, and Y.Y. Chen [1996], An average case analysis of a greedy algorithm for the on-line Steiner tree problem, Comput. Math. Appl. 31, no. 11, 121–131.
P.-J. Wan, D.-Z. Du, and R.L. Graham [1997], The Steiner ratio on the dual normed plane, Discrete Mathematics 171, 261–275.
L. Wang and D.-Z. Du [2000], Approximations for a Bottleneck Steiner Tree Problem, submitted for publication.
B.M. Waxman and M. Imase [1988], Worst-case performance of Rayward-Smith’ s Steiner tree heuristic, Inform. Process. Lett. 29, 283–287.
J. Westbrook and D.C.K. Yan [1995], The performance of greedy algorithms for the on-line Steiner tree and related problems, Math. Systems Theory 28, no. 5, 451–468.
Y.F. Wu, P. Widmayer, and C.K. Wong [1986], A faster approximation algorithm for the Steiner problem in graphs, Acta Informatica, 23, 223–229.
A.Z. Zelikovsky [1993], The 11/6-approximation algorithm for the Steiner problem on networks, Algorithmica 9, 463–470.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Kluwer Academic Publishers
About this chapter
Cite this chapter
Cheng, X., Li, Y., Du, DZ., Ngo, H.Q. (2004). Steiner Trees in Industry. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-23830-1_4
Download citation
DOI: https://doi.org/10.1007/0-387-23830-1_4
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-23829-6
Online ISBN: 978-0-387-23830-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)