Abstract
The amyloid cascade hypothesis is the most accepted explanation for the pathogenesis of Alzheimer’s disease (AD). APP is the precursor of the amyloid β peptide (Aβ), the principal proteinaceous component of amyloid plaques in brains of Alzheimer’s disease patients. Proteolytic cleavage of APP by the α-secretase within the Aβ sequence precludes formation of amyloidogenic peptides and leads to a release of soluble APPsα which has neuroprotective properties. In several studies, a decreased amount of APPsα in the cerebrospinal fluid of AD patients has been observed. Three members of the ADAM family (a disintegrin and metalloproteinase) ADAM-10, ADAM-17 (TACE) and ADAM-9 have been proposed as α-secretases. We review the evidence for each of these enzymes acting as a physiologically relevant α-secretase. In particular, we focus on ADAM-10, which recently was shown in a transgenic mouse model for AD, to act as an α-secretase in vivo. We also discuss the pharmacological up-regulation of α-secretases as a possible therapeutic treatment for AD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anders, A., Gilbert, S., Garten, W., Postina, R., Fahrenholz, F., 2001, Regulation of the alpha-secretase ADAM-10 by its prodomain and proprotein convertases. FASEB J., 15:1837–1839.
Asai, M., Hattori, C., Szabo, B., Sasagawa, N., Maruyama, K., Tanuma, S., Ishiura, S., 2003, Putative function of ADAM-9, ADAM-10, and ADAM-17 as APP alpha-secretase. Biochem. Biophys. Res. Commun., 301:231–5.
Arribas, J., Coodly, L., Vollmer, P., Kishimoto, T. K., Rose-John, S., Massague, J., 1996, Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J. Biol. Chem., 271:11376–82.
Avramovich, Y., Amit, T., Youdim, M. B., 2002, Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 277:31466–31473.
Bayer, T. A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepests, R., Eckert, A., Schussel, K., Eikenberg, O., Sturchler-Pierrat, C., Abramowski, D., Staufenbiel, M., Multhaup, G., 2003, Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc. Natl. Acad. Sci. USA 100:14187–14192.
Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack. J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan. S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J., Cerretti, D. P., 1997, A metalloproteinase disintegrin that releases tumour-necrosis factoralpha from cells. Nature 385:729–33.
Borchardt, T., Camakaris, J., Cappai, R., Masters, C. L., Beyreuther, K., Multhaup, G., 1999, Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem. J. 344:461–467.
Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J. R., Cumano, A., Roux, P., Black, R. A., Israel, A., 2000, A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol.Cell 5:207–16.
Buxbaum, J. D., Liu, K.-N., Luo, Y., Slack. J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P., Black, R., 1998, Evidence that tumor necrosis factor converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273:27765–67.
Chantry, A., Gregson, N. A., Glynn, P., 1989, A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization. J. Biol. Chem. 264:21603–7.
Chantry, A., Glynn, P., 1990, A novel metalloproteinase originally isolated from brain myelin membranes is present in many tissues. Biochem J. 268:245–8.
Colciaghi, F., Borroni, B., Pastorino, L., Marcello, E., Zimmermann, M., Cattabeni, F., Padovani, A., Di Luca, M., 2002, α-Secretase ADAM-10 as well as αAPPs is reduced in platelets and CSF of Alzheimer disease patients. Mol. Med. 8:67–74.
Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., Pericak-Vance, M. A., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–3.
Cordy, J.M., Hussain, I., Dingwall, C., Hooper, N.M., Turner, A.J., 2003, Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 100:11735–40.
Dallas, D. J., Genever, P. G., Patton, A. J., Millichip, M.I., McKie, N., Skerry, T. M., 1999, Localization of ADAM-10 and Notch receptors in bone. Bone 25: 9–15.
De Strooper, B., Umans, L., Van Leuven, F., Van Den Berghe, H., 1993, Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. J. Cell Biol. 121:295–304.
Ehehalt, R., Keller, P., Haass, C., Thiele, C., Simons, K., 2003, Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell. Biol. 160:113–23.
Endres, K., Anders, A., Kojro, E., Gilbert, S., Fahrenholz, F., Postina, R., 2003, Tumor necrosis factoralpha converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Ear. J. Biochem. 270:2386–93.
Fambrough, D., Pan, D., Rubin, G. M., Goodman, C. S., 1996, The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc. Natl. Acad. Sci. USA 93:13233–13238.
Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., Hartmann, T., 2001, Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 98:5856–61.
Fisher, A., Pittel, Z., Haring, R., Bar-Ner, N., Kliger-Spatz, M., Natan, N., Egozi, I., Sonego, H., Marcovitch, I., Brandeis, R., 2003, M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J. Mol. Neurosci. 20:349–356.
Friedhoff, L. T., Cullen, E. I., Geoghagen, N. S., Buxbaum, J. D., 2001, Treatment with controlled-release lovastatin decreases serum concentrations of human beta-amyloid (A beta) peptide. Int. J. Neuropsychopharmacol. 4:127–30.
Furukawa, K., Sopher, B. L., Rydel, R., Begley, J. G., Pham, D. G., Martin, G. M., Fox, M., Mattson, M. P., 1996, Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67:1882–1896.
Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J., Raines, E. W., 2001, Tumor necrosis factoralpha-converting enzyme (ADAM-17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276:37993–8001.
Gouras, G. K., Xu, H., Gross, R. S., Greenfield, J. P., Hai, B., Wang, R., Greengard, P., 2000, Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc. Natl. Acad. Sci. USA 97:1202–1205.
Gutwein, P., Mechtersheimer, S., Riedle, S., Stoeck, A., Gast, D., Joumaa, S., Zentgraf, H., Fogel, M., Altevogt, D. P., 2003, ADAM 10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J. 17:292–4.
Haass, C., Selkoe, D. J., 1993, Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell. 75:1039–1042.
Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., Selkoe, D. J., 1992, Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503.
Hartmann, D., De Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena, I. A., von Figura, K., Saftig, P., 2002, The disintegrin/metalloprotease ADAM-10 is essential for Notch signalling but not for α-secretase activity in flbroblasts. Hum. Mol. Genet. 11:2615–2624.
Hattori, M. et al., 2000, Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365.
Hotoda, N., Koike, H., Sasagawa, N., Ishiura, S., 2002, A secreted form of human ADAM-9 has an alpha-secretase activity for APP. Biochem. Biophys. Research. Commun. 293:800–5.
Howard, L., Lu, X., Mitchell, S., Griffiths, S., Glynn, P., 1996, Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. J. 317:45–50.
Hundhausen, C., Misztela, D., Berkhout, T. A., Broadway, N., Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R., Matthews, V., Kallen, K. J., Rose-John, S., Ludwig, A., 2003, The disintegrin-like metalloproteinase ADAM-10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102:1186–95.
Ikezu, T., Trapp, B. D., Song, K. S., Schlegel, A., Lisanti, M. P., Okamoto, T., 1998, Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein. J. Biol. Chem. 273:10485–10495.
Izumi, Y., Hirata, M., Hasuwa, H., Iwamoto, R., Umata, T., Miyado, K., Tamai, Y., Kurisaki, T., Sehara-Fujisawa, A., Ohno, S., Mekada, E., 1998, A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17:7260–72.
Jaffe, A. B., Toran-Allerand, C. D., Greengard, P., Gandy, S. E., 1994, Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J. Biol. Chem. 269:13065–13068.
Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., Drachman, D. A., 2000, Statins and the risk of dementia Lancet 356:1627–31.
Jolly-Tornetta, C., Gao, Z. Y., Lee, V. M., Wolf, B. A., 1998, Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons. J. Biol. Chem. 273:14015–14021.
Kang, J., Lemaire, H. G., Unterbeck, A., Album, L. M., Masters, C. L., Grzeshik, K. G., Multhaup, G., Beyreuther, K., Müller-Hil, B., 1987, The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736.
Koike, H., Tomioka, S., Sorimachi, H., Saido, T. C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K.; Ishiura, S., 1999, Membrane-anchoredmetalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343: 371–375.
Kojro, E., Gimpl, G., Lammich, S., Marz, W., Fahrenholz, F., 2001, Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM-10. Proc. Natl. Acad. Sci. USA 98: 5815–20.
Kozikowski, A. P., Nowak, I., Petukhov, P. A., Etcheberrigaray, R., Mohamed, A., Tan, M., Lewin, N., Hennings, H., Pearce, L. L., Blumberg, P. M., 2003, New amide-bearing benzolactam-based protein kinase C modulators induce enhanced secretion of the amyloid precursor protein metabolite sAPPalpha. J. Med. Chem. 46: 364–373.
Kuentzel, S. L., Ali, S. M., Altman, R. A., Greenberg, B. D., Raub, T. J., 1993, The Alzheimer beta-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem. J. 295: 367–378.
Kuo, Y. M., Emmerling, M. R., Bisgaier, C. L., Essenburg, A. D., Lampert, H. C., Drumm, D., Roher, A. E., 1998, Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain abeta 1-42 levels. Biochem. Biophys. Res. Commun. 252: 711–5.
Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. und Fahrenholz, F., 1999, Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96: 3922–3927.
Lannfelt, L., Basun, H., Wahlund, L. O., Rowe, B. A., Wagner, S. L., 1995, Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nature Med. 1: 829–832.
Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., Frosch, M. P., Selkoe, D. J., 2003, Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40: 1087–1093.
Lin, L., Georgievska, B., Mattsson, A., Isacson, O., 1999, Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc. Natl. Acad. Sci. U S A 96: 12108–12113.
Loechel, F., Gilpin, B. J., Engvall, E., Albrechtsen, R., Wewer, U. M., 1998, Human ADAM 12 (meltrin alpha) is an active metalloprotease. J. Biol. Chem. 273: 16993–16997.
Lum, L., Reid, M. S., Blobel, C. P., 1998, Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J. Biol. Chem. 273: 26236–26247.
Lunn, C. A., Fan, X., Dalie, B., Miller, K., Zavodny, P. J., Narula, S. K., Lundell, D., 1997, Purification of ADAM-10 from bovine spleen as a TNF alpha convertase. FEBS Lett. 400: 333–335.
Maillet, M., Robert, S. J., Cacquevel, M., Gastineau, M., Vivien, D., Bertoglio, J., Zugaza, J. L., Fischmeister, R., Lezoualc’h, F., 2003, Crosstalk between Rapl and Rac regulates secretion of sAPPalpha. Nat. Cell Biol. 5: 633–639.
Manthey, D., Heck, S., Engert, S., Behl, C., 2001, Estrogen induces a rapid secretion of amyloid beta precursor protein via the mitogen-activated protein kinase pathway. Eur. J. Biochem. 268:4285–4291.
Marcinkiewicz, M., Seidah, N., G., 2000, Coordinated expression of β-amyloid precursor protein and the putative β-secretase BACE and α-secretase ADAM-10 in mouse and human brain. J. Neurochem. 75: 2133–2143.
Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. R., Rauch, C. T., Castner, B. J., Davis, R., Clarke, H. R., Petersen, M., Fitzner, J. N., Cerretti, D. P., March, C. J., Paxton, R. J., Black, R. A., Bode, W., 1998, Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc. Natl. Acad. Sci. USA 95: 3408–3412.
Mattson, M. P., Cheng, B., Culwell, A. R., Esch, F. S., Lieberburg, I., Rydel, R. E., 1993, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10: 243–254.
Mazzucchelli M, Porrello E, Villetti G, Pietra C, Govoni S, Racchi M (2003) Characterization of the effect of ganstigmine (CHF2819) on amyloid precursor protein metabolism in SH-SY5Y neuroblastoma cells. J. Neural Transm. 110: 935–947.
Mechtersheimer, S., Gutwein, P., Agmon-Levin, N., Stoeck, A., Oleszewski, M., Riedle, S., Postina, R., Fahrenholz, F., Fogel, M., Lemmon, V., Altevogt, P., 2001, Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J. Cell Biol. 155: 661–673.
Mezaine, H., Dodart. J.-C., Mathis, C., Little, S., Clemens, J., Paul. S. M., Ungerer, A., 1998, Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice. Proc. Natl. Acad. Sci. USA 95: 12683–12688.
Millichip, M. I., Dallas, D. J., Wu, E., Dale, S., McKie, N., 1998, The metallo-disintegrin ADAM-10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem. Biophys. Res. Commun. 245: 594–598.
Moffat, S. D., Zonderman, A. B., Metter, E. J., Kawas, C., Blackman, M. R., Harman, S. M., Resnick, S. M., 2004, Free testosterone and risk for Alzheimer disease in older men. Neurology 62: 188–193.
Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. I, Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L., Becherer, J. D., 1997, Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385: 733–6.
Mucke, L., Abraham, C. R., Masliah, E., 1996, Neurotrophic and neuroprotective effects of hAPP in transgenic mice. Ann. N. Y. Acad. Sci. 777: 82–88.
Nath, D., Slocombe, P. M., Webster, A., Stephens, P. E., Docherty, A. J, Murphy, G., 2000, Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(l )integrin, leading to a marked induction of fibroblast cell motility. J. Cell. Sci. 113: 2319–28.
Nitsch, R. M., Deng, A., Wurtman, R. J., Growdon, J. H., 1997, Metabotropic glutamate receptor subtype mGluRl alpha stimulates the secretion of the amyloid beta-protein precursor ectodomain. J. Neurochem. 69: 704–712.
Nitsch, R. M., Deng, M., Growdon, J. H., Wurtman, R. J., 1996, Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J. Biol. Chem. 271:4188–4194.
Nitsch, R. M., Deng, M., Tennis, M., Schoenfeld, D., Growdon, J. H., 2000, The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol. 48: 913–918.
Nitsch, R. M., Slack, B. E., Wurtman, R. J., Growdon, J. H., 1992, Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307.
Pakaski, M., Rakonczay, Z., Kasa, P., 2001, Reversible and irreversible acetylcholinesterase inhibitors cause changes in neuronal amyloid precursor protein processing and protein kinase C level in vitro. Neurochem. Int. 38: 219–226.
Pan, D., Rubin, G. M., 1997, Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90: 271–80.
Pandiella, A., Massague, J., 1991, Multiple signals activate cleavage of the membrane transforming growth factor-precursor. J. Biol. Chem. 266: 5769–5773.
Parkin, E. T., Trew, A., Christie, G., Faller, A., Mayer, R., Turner, A. J., Hooper, N. M., 2002, Structure-activity relationship of hydroxamate-based inhibitors on the secretases that cleave the amyloid precursor protein, angiotensin converting enzyme, CD23, and pro-tumor necrosis factor-alpha. Biochemistry 41: 4972–81.
Parvathy, S., Hussain, I., Karran, E. H., Turner, A. J., Hooper, N. M., 1998, Alzheimer’s amyloid precursor protein alpha-secretase is inhibited by hydroxamic acid-based zinc tnetalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochemistry 37: 1680–5.
Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. I, Black, R. A., 1998, An essential role for ectodomain shedding in mammalian development. Science 282: 1281–4.
Postina, R., Schroeder, A., Dewachter, I., Bohl, J., Schmitt, U., Kojro, E., Prinzen, C., Endres, K., Hiemke. C., Blessing, M., Flamez, P., Dequenne, A., Godaux, E., van Leuven, F., Fahrenholz, F., 2004, A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer’s disease mouse model. J. Clin. Invest. 113: 1456–1464.
Qi, H., Rand, M.D., Wu, X., Sestan, N., Wang, W., Rakic, P., Xu, T., Artavanis-Tsakonas, S., 1999, Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science. 283:91–94.
Racchi, M., Ianna, P., Binetti, G., Trabucchi, M., Govoni, S., 1998, Bradykinin-induced amyloid precursor protein secretion: a protein kinase C-independent mechanism that is not altered in fibroblasts from patients with sporadic Alzheimer’s disease. Biochem. J. 330: 1271–1275.
Racchi, M., Solano, D. C., Sironi, M., Govoni, S., 1999, Activity of alpha-secretase as the common final effector of protein kinase C-dependent and-independent modulation of amyloid precursor protein metabolism. J. Neurochem. 72: 2464–70.
Refolo, L. M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., Pappolla, M. A., 2000, Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neumbiol. Dis. 7: 321–31.
Riddell, D. R., Christie, G., Hussain, I., Dingwall, C., 2001, Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr. Biol. 11: 1288–93.
Rio, C., Buxbaum, J. D., Peschon, J. J., Corfas, G., 2000, Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J. Biol. Chem. 275: 10379–87.
Robert, S. J., Zugaza, J. L., Fischmeister, R., Gardier, A. M., Lezoualc’h, F., 2001, The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 276: 44881–44888.
Roberts, S. B., Ripellino, J. A., Ingalls, K. M., Robakis, N. K., Felsenstein, K. M., 1994, Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J. Biol. Chem. 269: 3111–3116.
Roghani, M., Becherer, J. D., Moss, M. L., Atherton, R. E., Erdjument-Bromage, H., Arribas, J., Blackburn, R. K., Weskamp, G., Tempst, P., Blobel, C. P., 1999, Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 274: 3531–40.
Rooke, J., Pan, D., Xu, T., Rubin, G. M., 1996, KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273: 1227–1231.
Rosendahl, M. S., Ko, S. C., Long D. L., Brewer, M. T., Rosenzweig, B., Hedl, E., Anderson L., Pyle, S. M., Moreland J., Meyers, M. A., Kohno, T., Lyons D., Lichenstein, H. S., 1997, Identification and characterization of a pro-tumor necrosis factor-α-processing enzyme from the ADAM family of zinc metalloproteases. J. Biol. Chem. 272: 24588–24593.
Rossner, S., Beck, M., Stahl, T., Mendla, K., Schliebs, R., Bigl, V., 2000, Constitutive overactivation of protein kinase C in guinea pig brain increases alpha-secretory APP processing without decreasing beta-amyloid generation. Eur. J. Neurosci. 12: 3191–3200.
Sahasrabudhe, S. R., Spruyt, M. A., Muenkel, H. A., Blume, A. J., Vitek, M. P., Jacobsen, J. S., 1992, Release of amino-terminal fragments from amyloid precursor protein reporter and mutated derivatives in cultured cells. J. Biol. Chem. 267: 25602–25608.
Sambamurti, K., Shioi, J., Anderson, J. P., Pappolla, M. A., Robakis, N. K., 1992, Evidence for intracellular cleavage of the Alzheimer’s amyloid precursor in PC 12 cells. J. Neurosci. Res. 33:319–329.
Schlondorff, J., Becherer, J. D., Blobel, C. P., 2000, Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem. J. 347: 131–8.
Seals, D. F., Courtneidge, S. A., 2003, The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17: 7–30.
Selkoe, D. J., 1996, Amyloid beta-protein and the genetics of Alzheimer’s disease. J. Biol. Chem. 271: 18595–18298.
Sennvik, K., Fastbom, J., Blomberg, M., Wahlund, L. O., Winblad, B., Benedikz, E., 2000, Levels of alpha-and beta-secretase-cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosc. Lett. 278: 169–172.
Simons, K., Ikonen, E., 2000, How cells handle cholesterol. Science 290: 1721–1726.
Simons, K., Toomre, D., 2000, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39.
Simons, M., De Strooper, B., Multhaup, G., Tienari, P. J., Dotti, C. G., Beyreuther, K., 1996, Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J. Neurosci. 16: 899–908.
Simons, M., Schwarzler, F., Lutjohann, D., von Bergmann, K., Beyreuther, K., Dichgans, J., Wormstall, H., Hartmann, T., Schulz, J. B., 2002, Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52: 346–350.
Sisodia, S. S., 1992, β-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA 89: 6075–6079.
Six, E., Ndiaye, D., Laabi, Y., Brou, C., Gupta-Rossi, N., Israel, A., Logeat, F., 2003, The Notch ligand Delta 1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc. Natl. Acad. Sci. USA 100: 7638–43.
Skovronsky, D. M., Fath, S., Lee, V. M., Milla, M. E., 2001, Neuronal localization of the TNFalpha converting enzyme (TACE) in brain tissue and its correlation to amyloid plaques. J. Neurobiol. 49: 40–6.
Slack, B. E., Breu, J., Muchnicki, L., Wurtman, R. J., 1997, Rapid stimulation of amyloid precursor protein release by epidermal growth factor: role of protein kinase C. Biochem. J. 327: 245–249.
Solano, D.C., Sironi, M., Bonfini, C., Solerte, S.B., Govoni, S., Racchi, M., 2000, Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J. 14: 1015–1022
Srour, N., Lebel, A., McMahon, S., Fournier, I., Fugere, M., Day, R., Dubois, C. M., 2003, TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett. 554: 275–83.
Tomita, S., Kirino, Y., Suzuki, T., 1998, Cleavage of Alzheimer’s amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J. Biol. Chem. 273: 6277–6284.
Tyler, S. J., Dawbarn, D., Wilcock, G. K., Allen, S. J., 2002, Alpha-and beta-secretase: profound changes in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 299: 373–6.
Wada, S., Morishima-KLawashima, M., Qi, Y., Misono, H., Shimada, Y., Ohno-Iwashita, Y., Ihara, Y., 2003, Gamma-secretase activity is present in rafts but is not cholesterol-dependent. Biochemistry. 42: 13977–86.
Wahrle, S., Das, P., Nyborg, A. C., McLendon, C., Shoji, M., Kawarabayashi, T., Younkin, L. H., Younkin, S. G., Golde, T. E., 2002, Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9: 11–23.
Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J., Masters, C. L., Beyreuther, K., 1989, Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126.
Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., Siegel, G., 2000, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57: 1439–43.
Weskamp, G., Cai, H., Brodie, T. A., Higashyama, S., Manova, K., Ludwig, T., Blobel, C. P., 2002, Mice lacking the metalloprotease-disintegrin MDC9 (ADAM-9) have no evident major abnormalities during development or adult life. Mol. Cell. Biol. 22: 1537–44.
Wu, E., Croucher, P. I., McKie, N., 1997, Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of hematological malignancies. Biochem. Biophys. Res. Commun. 235: 437–42.
Xu, H., Gouras, G. K., Greenfield, J. P., Vincent, B., Naslund, J., Mazzarelli, L., Fried, G., Jovanovic, J. N., Seeger, M., Relkin, N. R., Liao, F., Checler, F., Buxbaum, J. D., Chait, B. T., Thinakaran, G., Sisodia, S. S., Wang, R., Greengard, P., Gandy, S., 1998, Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat. Med. 4: 447–451.
Youdim, M. B., Amit, T., Bar-Am, O., Weinstock, M., Yogev-Falach, M., 2003, Amyloid processing and signal transduction properties of antiparkinson-antialzheimer neuroprotective drugs rasagiline and TV3326. Ann. N. Y. Acad. Sci. 993: 378–386.
Zhong, Z., Higaki, J., Murakami, K., Wang., Y., Catalano, R., Quon, D., Cordell, B., 1994, Secretion of beta-amyloid precursor protein involves multiple cleavage sites. J. Biol. Chem. 269: 627–632.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer Science+Business Media, Inc.
About this chapter
Cite this chapter
Kojro, E., Fahrenholz, F. (2005). The Non-Amyloidogenic Pathway: Structure and Function of α-Secretases. In: Harris, J.R., Fahrenholz, F. (eds) Alzheimer’s Disease. Subcellular Biochemistry, vol 38. Springer, Boston, MA . https://doi.org/10.1007/0-387-23226-5_5
Download citation
DOI: https://doi.org/10.1007/0-387-23226-5_5
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-23225-6
Online ISBN: 978-0-387-23226-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)