[go: up one dir, main page]

Skip to main content
Log in

Investigating the effects of sequential aging temperature profiles on the response of neoprene rubber

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We conducted a comprehensive investigation to understand the effects of sequential aging temperature profiles on Neoprene rubber, aiming to provide a clearer understanding of the purpose, methodology, findings, and implications of our work. Two sequential thermal aging conditions were applied to the Neoprene rubber samples in a controlled, moisture-free environment. The characterization of the aged samples included crosslinking density analysis using swelling tests, Differential Scanning Calorimetry (DSC), and uni-axial tensile tests. Our study focused on unraveling the changes in the physical and mechanical properties of the Neoprene matrix resulting from thermal aging. Notably, we found that the degradation of Neoprene was influenced by both the temperature and the order of the aging profiles. Higher temperatures led to increased cross-linking density and improved thermal stability, indicating a prevalence of oxidation cross-linking over chain scission. This led to the creation of a more compact network structure within the material. Moreover, we introduced the concept of damage capacity, which revealed that different mechanisms of damage affect the material’s toughness with varying degrees of impact. This understanding emphasizes the limited capacity for damage and subsequent mechanisms’ reliance on the remaining capacity. The significance of our work lies in shedding light on the interplay between thermal aging conditions and the behavior of Neoprene rubber. The findings provide valuable insights for material design and have implications for a range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kaiser S, Rabbani R, Ahmed R, Kaiser S. Temperature dependent mechanical properties of natural and synthetic rubber in practical structures.

  2. Shakiba M, Darabi MK, Abu Al-Rub RK, Little DN, Masad EA. Constitutive modeling of the coupled moisture-mechanical response of particulate composite materials with application to asphalt concrete. J Eng Mech, 141(2):04014120, 2015.

  3. Ayoub G, Zaïri F, Naït-Abdelaziz M, Gloaguen JM (2010) Modelling large deformation behaviour under loading– unloading of semicrystalline polymers: application to a high density polyethylene. Int J Plasticity 26(3):329–347

    Article  CAS  Google Scholar 

  4. Ayoub G, Zaïri F, Naït-Abdelaziz M, Gloaguen JM (2011) Modeling the low-cycle fatigue behavior of visco- hyperelastic elastomeric materials using a new network alteration theory: Application to styrene-butadiene rubber. J Mech Phys Sol 59(2):473–495

    Article  CAS  Google Scholar 

  5. Benxiang H, Yuanbing Z, Luo M-C, Wei Y-C, Liu G-X, Liao S, Zhao Y (2021) Influence of l- quebrachitol on the properties of centrifuged natural rubber. e-Polymers 21(1):420–427

    Article  Google Scholar 

  6. Kim YS, Ha SC, Yang Y, Kim YJ, Cho SM, Yang H, Kim YT (2005) Portable electronic nose system based on the carbon black–polymer composite sensor array. Sensors and Actuators B: Chemical 108(1–2):285–291

    Article  CAS  Google Scholar 

  7. Hossain M, Possart G (2009) Steinmann P A finite strain framework for the simulation of polymer curing. part i: elasticity. Comput Mechan 44(5):621–630

    Article  Google Scholar 

  8. Thermal aging coupled with cyclic fatigue in cross-linked polymers: Constitutive modeling fe implementation. Int J Solids Struct, 252:111800, 2022

  9. Bahrololoumi A, Mohammadi H, Moravati V, Dargazany R (2021) A physically-based model for thermo-oxidative and hydrolytic aging of elastomers. Int J Mech Sci 194:106193

    Article  Google Scholar 

  10. Bahrololoumi A, Morovati V, Shaafaey M, Dargazany R (2021) A multi-physics approach on modeling of hygrothermal aging and its effects on constitutive behavior of cross-linked polymers. J Mechan Phys Solids 156:104614

    Article  CAS  Google Scholar 

  11. Amir B, Roozbeh D (2019) Hydrolytic aging in rubber-like materials: a micro-mechanical approach to modeling. In ASME International Mechanical Engineering Congress and Exposition, volume 59469, page V009T11A029. American Society of Mechanical Engineers

  12. Kadapa C, Hossain M (2022) A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers. Mechan Mater 166:104207

    Article  Google Scholar 

  13. Dadgar-Rad F, Hossain M (2022) Large viscoelastic deformation of hard-magnetic soft beams. Extreme Mechan Lett 54:101773

    Article  Google Scholar 

  14. Dadgar-Rad Farzam, Hossain Mokarram (2022) Finite deformation analysis of hard-magnetic soft materials based on micropolar continuum theory. Int J Solid Struc 251:111747

    Article  Google Scholar 

  15. Zhang F, Cui S (2022) A two-component statistical model for natural rubber. Polymer 242:124462

    Article  CAS  Google Scholar 

  16. Di L, Xue B, Cao Y, Chen B (2022) Constitutive theory for direct coupling of molecular frictions and the viscoelasticity of soft materials. J Appl Mechan 89(5):051007

    Article  Google Scholar 

  17. Morovati V, Bahrololoumi A, Dargazany R (2021) Fatigue-induced stress-softening in cross-linked multi-network elastomers: Effect of damage accumulation. Int J Plastic 142:102993

    Article  CAS  Google Scholar 

  18. Bahrololoumi A, Morovati V, Poshtan EA, Dargazany R (2020) A multi-physics constitutive model to predict hydrolytic aging in quasi-static behaviour of thin cross-linked polymers. Int J Plastic 130:102676

    Article  CAS  Google Scholar 

  19. Shaafaey M, Bahrololoumi A, Alazhary S, Mohammadi H, Dargazany R. (2021) Experimental characterization of hygrothermal aging: Competition between thermo-oxidation and hydrolysis phenomena. In ASME International Mechanical Engineering Congress and Exposition, volume 85680, page V012T12A032. American Society of Mechanical Engineers

  20. Aranda MT, García IG, Reinoso J, Mantič V (2022) Experimental evaluation of the similarity in the interface fracture energy between pmma/epoxy/pmma and pmma/epoxy joints. Eng Fract Mech 259:108076

    Article  Google Scholar 

  21. Liu D, Ma S, Yuan H, Markert B (2022) Computational modelling of poro-visco-hyperelastic effects on time-dependent fatigue crack growth of hydrogels. Int J Plastic 155:103307

    Article  CAS  Google Scholar 

  22. Najmeddine A, Xu Z, Liu G, Croft ZL, Liu G, Esker AR, Shakiba M. 2022 Physics and chemistry-based constitutive modeling of photo-oxidative aging in semi-crystalline polymers Int J Solids Structures 239–240:111427

    Article  Google Scholar 

  23. Shariff MHBM, Hossain M, Bustamante R, Merodio J (2021) Modelling the residually stressed magneto-electrically coupled soft elastic materials. Int J Non-Linear Mechan 137:103802

    Article  Google Scholar 

  24. Jiang Y, Jin L, Huo Y (2021) Unusual stress and strain concentration behaviors at the circular hole of a large monodomain liquid crystal elastomer sheet. J Mechan Phys Solids 156:104615

    Article  CAS  Google Scholar 

  25. Yarali E, Baniasadi M, Zolfagharian A, Chavoshi M, Arefi F, Hossain M, Bastola A, Ansari M, Foyouzat A, Dabbagh A, Ebrahimi M (2022) Magneto-/ electro-responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Appl Mater Today 26:101306

    Article  Google Scholar 

  26. Ghaderi A, Morovati V, Dargazany R (2021) A bayesian surrogate constitutive model to estimate failure probability of elastomers. Mechan Mater 162:104044

    Article  Google Scholar 

  27. Bahrololoumi A, Shaafaey M, Ayoub G, Dargazany R (2022) A failure model for damage accumulation of cross-linked polymers during parallel exposure to thermal aging & fatigue. Int J Non-Linear Mechanics 146:104142

    Article  Google Scholar 

  28. Mohammadi H, Morovati V, Korayem AE, Poshtan E, Dargazany R (2021) Constitutive modeling of elastomers during photo- and thermo-oxidative aging. Polymer Degradation and Stability 191:109663

    Article  CAS  Google Scholar 

  29. Mohammadi H, Morovati V, Poshtan E, Dargazany R (2020) Understanding decay functions and their contribution in modeling of thermal-induced aging of cross-linked polymers. Polymer Degradation and Stability 175:109108

    Article  Google Scholar 

  30. Collins I, Hossain M, Dettmer W, Masters I (2021) Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches. Renew Sustain Energy Rev 151:111478

    Article  Google Scholar 

  31. Kadapa C, Li Z, Hossain M, Wang J (2021) On the advantages of mixed formulation and higher-order elements for computational morphoelasticity. J Mechan Phys Solids 148:104289

    Article  Google Scholar 

  32. Mulderrig J, Li B, Bouklas N (2021) Affine and non-affine microsphere models for chain scission in polydisperse elastomer networks. Mechan Mater 160:103857

    Article  Google Scholar 

  33. Bahrololoumi A, Ghaderi A, Shaafaey M, Dargazany R (2021) A micro-mechanical constitutive model to predict hy- grothermal aging of cross-linked polymers. In ASME International Mechanical Engineering Congress and Exposition, volume 85680, page V012T12A039. American Society of Mechanical Engineers

  34. Shaafaey M, Miao W, Bahrololoumi A, Nabinejad O, Dargazany R (2022) Effects of hydrolytic aging on constitutive behavior of silicone adhesives in seawater and distilled water. Exp Mech: 1–24

  35. Lamnii H, Nait-Abdelaziz M, Ayoub G, Gloaguen JM, Maschke U, Mansoor B (2018) Effect of uv ageing on the fatigue life of bulk polyethylene. In MATEC Web of Conferences, volume 165, page 08002. EDP Sciences

  36. Dinari A, Zaïri F, Chaabane M, Ismail J (2021) Benameur T Thermo-oxidative stress relaxation in carbon-filled sbr. Plastics, Rubber and Composites 50(9):425–440

    Article  CAS  Google Scholar 

  37. Alazhary S, Shaafaey M, Mohammadi H, Dargazany R (2023) Investigation of thermo-oxidative aging of silicone-based adhesives: substantiating separability between environmental and mechanical damages. J Polymer Res 30(1):1–14

    Article  Google Scholar 

  38. Ghaderi A, Morovati V, Bahrololoumi A, Dargazany RA (2020) A physics-informed neural network constitutive model for cross-linked polymers. In ASME International Mechanical Engineering Congress and Exposition, volume 84607, page V012T12A007. American Society of Mechanical Engineers

  39. Rodriguez AK, Mansoor B, Ayoub G, Colin X, Benzerga AA (2020) Effect of uv-aging on the mechanical and fracture behavior of low density polyethylene. Polymer Degrad Stab 180:109185

    Article  CAS  Google Scholar 

  40. Rezig N, Bellahcene T, Aberkane M, Nait AM (2020) Thermo-oxidative ageing of a sbr rubber: Effects on mechanical and chemical properties. J Polymer Res 27(11):1–13

    Article  Google Scholar 

  41. Patel M, Soames M, Skinner AR (2004) Stephens TS Stress relaxation and thermogravimetric studies on room temperature vulcanised polysiloxane rubbers. Polymer Degrad Stab 83(1):111–116

    Article  CAS  Google Scholar 

  42. Celina MC (2013) Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polymer Degrad Stab 98(12):2419–2429

    Article  CAS  Google Scholar 

  43. Gillen KT, Celina M (2018) Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments. Rubber Chem Technol 91(1):27–63

    Article  CAS  Google Scholar 

  44. Ghazavi M, Abdollahi SF, Kutay ME (2022) Implementation of nchrp 9-44a fatigue endurance limit prediction model in mechanistic-empirical asphalt pavement analysis web application. Transportation Research Record, page 03611981221076114

  45. Abdelaziz MN, Ayoub G, Colin X, Benhassine M, Mouwakeh M (2019) New developments in fracture of rubbers: Predictive tools and influence of thermal aging. International Journal of Solids and Structures 165:127–136

    Article  Google Scholar 

  46. Starkova O, Gagani AI, Karl CW, Rocha IB, Burlakovs J, Krauklis AE (2022) Modelling of environmental ageing of polymers and polymer compositesmdash;durability prediction methods. Polymers 14(5)

  47. Frigione M (2022) Assessment of the ageing and durability of polymers. Polymers 14(10)

  48. Krauklis AE, Karl CW, Rocha IB, Burlakovs J, Ozola-Davidane R, Gagani AI, Starkova O (2022) Modelling of environmental ageing of polymers and polymer compositesmdash;modular and multiscale methods. Polymers, 14(1)

  49. Bahrololoumi A, Mohammadi H, Morovati V, Dargazany R (2020) A modified network alteration model to predict quasi- static behavior of the cross-linked polymers during hydrolytic aging. In ASME International Mechanical Engineering Congress and Exposi- tion, volume 84607, page V012T12A005. American Society of Mechanical Engineers

  50. Shaafaey M, Bahrololoumi A, Mohammadi H, Alazhary S, Dargazany R (2021) Investigation of hygrothermal aging on the polyurethane-based (pub) adhesive: substantiating competition scenario between sub-aging thermo-oxidation and hydrolytic phenomena. J Polymer Res 28(12):1–25

    Article  Google Scholar 

  51. Rey T, Chagnon G, Le Cam JB, Favier D (2013) Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers. Polymer Testing 32(3):492–501

    Article  CAS  Google Scholar 

  52. Labouriau A, Robison T, Meincke L, Wrobleski D, Taylor D, Gill J (2015) Aging mechanisms in rtv polysiloxane foams. Polymer Degrad Stab 121:60–68

    Article  CAS  Google Scholar 

  53. Ghaderi A, Morovati V, Chen Y, Dargazany R (2022) A physics-informed multi-agents model to predict thermo- oxidative/hydrolytic aging of elastomers. Int J Mech Sci 223:107236

    Article  Google Scholar 

  54. Wang M, Wang R, Chen X, Kong Y, Huang Y, Lv Y, Li G (2022) Effectof non-rubber components on the crosslinking structure and thermo-oxidative degradation of natural rubber. Polymer Degrad Stab 196:109845

    Article  CAS  Google Scholar 

  55. Chaabane M, Ding N, Zaïri F (2021) An approach to assess the thermal aging effects on the coupling between inelasticity and network alteration in filled rubbers. Int J Non-Linear Mechan 136:103783

    Article  Google Scholar 

  56. Payungwong N, Tuampoemsab S, Rojruthai P, Sakdapipanich J (2021) The role of model fatty acid and protein on thermal aging and ozone resistance of peroxide vulcanized natural rubber. J Rubber Res 24(4):543–553

    Article  CAS  Google Scholar 

  57. Zaghdoudi M, Kömmling A, Jaunich M, Wolff D (2020) Erroneous or arrhenius: A degradation rate-based model for epdm during homogeneous ageing. Polym, 12(9)

  58. Tsai M-H, Ouyang H, Yang F, Wei M-K, Lee S (2022) Effects of ultraviolet irradiation on the aging of the blends of poly (lactic acid) and poly (methyl methacrylate). Polymer 252:124947

    Article  CAS  Google Scholar 

  59. Celina MC (2013) Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polymer Degrad Stab 98(12):2419–2429

    Article  CAS  Google Scholar 

  60. Courvoisier E, Bicaba Y, Colin X (2018) Multi-scale and multi-technique analysis of the thermal degradation of poly (ether ether ketone). Polymer Degrad Stab 151:65–79

    Article  CAS  Google Scholar 

  61. Fayolle B, Richaud E, Colin X, Verdu J (2008) Degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. J Mater Sci 43:6999–7012

    Article  CAS  Google Scholar 

  62. Li H, Li J, Ma Y, Yan Q, Ouyang B (2018) The role of thermo-oxidative aging at different temperatures on the crystal structure of crosslinked polyethylene. J Mater Sci: Mater Electron 29(5):3696–3703

    CAS  Google Scholar 

  63. Liu Q, Shi W, Li K, Chen Z, Liu H (2019) Performance degradation prediction and reliability evaluation of rubber aging in natural environment under alternating cyclic thermal load. IEEE Access 7:63027–63035

    Article  Google Scholar 

  64. Zhuo WY, Wang QL, Li G, Yang G, Zhang H, Xu W, Niu YH, Li GX (2022) Detection of the destruction mechanism of perfluorinated elastomer (ffkm) network under thermo-oxidative aging conditions. Chi J Polymer Sci, p. 1–11

  65. Arhant M, Lolive E, Bonnemains T, Davies P (2022) A study of pure hydrolysis of carbon fibre reinforced polyamide 6 composites tested under mode i loading. Composites Part A: Appl Sci Manufact 152:106719

    Article  CAS  Google Scholar 

  66. Braun CA, Nam SL, de la Mata AP, Harynuk J, Chung HJ (2022) Dolez PI Hydrother- mal aging of polyimide film. J Appl Polymer Sci 139(20):52183

    Article  CAS  Google Scholar 

  67. Celina M, Gillen KT, Assink RA (2005) Accelerated aging and lifetime prediction: Review of non-arrhenius behaviour due to two competing processes. Polymer Degrad Stab 90(3):395–404

    Article  CAS  Google Scholar 

  68. Shaw JA, Jones AS, Wineman AS (2005) Chemorheological response of elastomers at elevated temperatures: Experiments and simulations. J Mechan Phys Solids 53(12):2758–2793

    Article  CAS  Google Scholar 

  69. Zhang W, Liu X, Wang J, Tang J, Hu J, Lu T, Suo Z (2018) Fatigue of double-network hydrogels. Engi- neering Fracture Mechanics 187:74–93 (SI: 50th Anniversary Issue)

    Article  Google Scholar 

  70. Morovati V, Ghaderi A, Dargazany R (2020) Data-driven constitutive modeling of the progressive softening in elastomeric gels with interpenetrating networks. In ASME International Mechanical Engineering Congress and Exposition, volume 84607, page V012T12A043. American Society of Mechanical Engineers

  71. Klüppel M, Jungk J (2022) Thermo-oxidative aging and mechanical fatigue of elastomer compounds used in various fields of rubber industry. Springer

    Book  Google Scholar 

  72. Mao Y, Talamini B, Anand L (2017) Rupture of polymers by chain scission. Extreme Mechan Lett 13:17–24

    Article  Google Scholar 

  73. Talamini B, Mao Y, Anand L (2018) Progressive damage and rupture in polymers. J Mechan Phys Solids 111:434–457

    Article  CAS  Google Scholar 

  74. Zhao Z, Lei H, Chen H-S, Zhang Q, Wang P, Lei M (2021) A multiscale tensile failure model for double network elastomer composites. Mechan Mater 163:104074

    Article  Google Scholar 

  75. Lei M, Ren S, Wang S, Zhao Z, Xiao J, Wen L, Hou X (2022) A multiscale analysis framework for formation and failure of the thermoplastic interface. Mechan Mater 168:104270

    Article  Google Scholar 

  76. Flory PJ, Rehner J Jr (1943) Statistical mechanics of cross-linked polymer networks i. rubberlike elasticity. J Chem Phys 11(11):512–520

    Article  CAS  Google Scholar 

  77. Dismukes JP, Ekstrom L, Paff RJ (1964) Lattice parameter and density in germanium-silicon alloys1. J Phys Chem 68(10):3021–3027

    Article  CAS  Google Scholar 

  78. Vryonis O, Virtanen ST, Andritsch T, Vaughan AS, Lewin PL (2019) Understanding the cross-linking reactions in highly oxidized graphene/epoxy nanocomposite systems. J Mater Sci 54(4):3035–3051

    Article  CAS  Google Scholar 

  79. Atif R, Shyha I, Inam F (2016) Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—a review. Polymers 8(8):281

    Article  PubMed  PubMed Central  Google Scholar 

  80. Alcock B, Jørgensen JK (2015) The mechanical properties of a model hydrogenated nitrile butadiene rubber (hnbr) following simulated sweet oil exposure at elevated temperature and pressure. Polymer Testing 46:50–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Dargazany.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazhary, S., Shaafaey, M., Bahrololoumi, A. et al. Investigating the effects of sequential aging temperature profiles on the response of neoprene rubber. J Polym Res 31, 102 (2024). https://doi.org/10.1007/s10965-024-03910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03910-y

Keywords