[go: up one dir, main page]

About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.8 Differential Equations

See Table 18.8.1 and also §22.6 of Abramowitz and Stegun (1964).

Table 18.8.1: Classical OP’s: differential equations A(x)f′′(x)+B(x)f(x)+C(x)f(x)+λnf(x)=0.
# f(x) A(x) B(x) C(x) λn
1 Pn(α,β)(x) 1x2 βα(α+β+2)x 0 n(n+α+β+1)
2 (sin12x)α+12(cos12x)β+12×Pn(α,β)(cosx) 1 0 14α24sin212x+14β24cos212x (n+12(α+β+1))2
3 (sinx)α+12Pn(α,α)(cosx) 1 0 (14α2)/sin2x (n+α+12)2
4 Cn(λ)(x) 1x2 (2λ+1)x 0 n(n+2λ)
5 Tn(x) 1x2 x 0 n2
6 Un(x) 1x2 3x 0 n(n+2)
7 Pn(x) 1x2 2x 0 n(n+1)
8 Ln(α)(x) x α+1x 0 n
9 e12x2xα+12Ln(α)(x2) 1 0 x2+(14α2)x2 4n+2α+2
10 e12xx12αLn(α)(x) x 1 14x14α2x1 n+12(α+1)
11 en1xx+1Ln1(2+1)(2n1x) 1 0 2x(+1)x2 1n2
12 Hn(x) 1 2x 0 2n
13 e12x2Hn(x) 1 0 x2 2n+1
14 𝐻𝑒n(x) 1 x 0 n

Item 11 of Table 18.8.1 yields (18.39.36) for Z=1.