Address
:
[go:
up one dir
,
main page
]
Include Form
Remove Scripts
Session Cookies
DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
10
Bessel Functions
Bessel and Hankel Functions
10.9
Integral Representations
10.11
Analytic Continuation
§10.10
Continued Fractions
ⓘ
Keywords:
Bessel functions
,
continued fractions
Notes:
See
Watson (
1944
, §§5.6, 9.65)
.
Referenced by:
§3.10(ii)
Permalink:
http://dlmf.nist.gov/10.10
See also:
Annotations for
Ch.10
Assume
J
ν
−
1
(
z
)
≠
0
. Then
10.10.1
J
ν
(
z
)
J
ν
−
1
(
z
)
=
1
2
ν
z
−
1
−
1
2
(
ν
+
1
)
z
−
1
−
1
2
(
ν
+
2
)
z
−
1
−
⋯
,
z
≠
0
,
ⓘ
Symbols:
J
ν
(
z
)
: Bessel function of the first kind
,
z
: complex variable
and
ν
: complex parameter
A&S Ref:
9.1.73
Referenced by:
§10.33
,
§10.74(v)
Permalink:
http://dlmf.nist.gov/10.10.E1
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.10
and
Ch.10
10.10.2
J
ν
(
z
)
J
ν
−
1
(
z
)
=
1
2
z
/
ν
1
−
1
4
z
2
/
(
ν
(
ν
+
1
)
)
1
−
1
4
z
2
/
(
(
ν
+
1
)
(
ν
+
2
)
)
1
−
⋯
,
ν
≠
0
,
−
1
,
−
2
,
…
.
ⓘ
Symbols:
J
ν
(
z
)
: Bessel function of the first kind
,
z
: complex variable
and
ν
: complex parameter
A&S Ref:
9.1.73
Referenced by:
§10.33
,
§10.74(v)
Permalink:
http://dlmf.nist.gov/10.10.E2
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.10
and
Ch.10
See also
Cuyt
et al.
(
2008
, pp. 349–356)
.