Kerntechnik

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Schematische Darstellung einer Uran-Kernspaltung – Grundlage vieler kerntechnischer Anwendungen. Im Mittel werden bei der Spaltung von spaltbaren Isotopen etwa 200 MeV bzw. 3,204e-11 J pro Kernspaltung frei. Im Moment der Spaltung werden im Mittel 2 bis 3 Neutronen frei, welche weitere Kerne spalten können (Kettenreaktion). Ebenfalls zu erkennen sind die beiden Spaltprodukte, eine von vielen möglichen Kombinationen (Ausbeute).

Die Kerntechnik oder Nukleartechnik, auch Kerntechnologie, Kernenergetik oder umgangssprachlich (seltener) Atomtechnik genannt, ist eine technische Disziplin, die sich mit der Nutzung von Kernreaktionen und Radioaktivität für verschiedene Zwecke (siehe Teilgebiete) befasst. Auf der naturwissenschaftlichen Basis von Kernphysik und -chemie und ionisierender Strahlung entwickelt die Kerntechnik technische Verfahren, Geräte und Anlagen. Dies umfasst die Konzeption und Auslegung von Anlagen, die Herstellung, die Sicherheitstechnik, die Herstellung und Wiederaufarbeitung oder Entsorgung von Brennelementen, die Dekommissionierung und der Rückbau ausgedienter Anlagen.[1][2]

Zur Kerntechnik zählen im erweiterten Sinne auch Technologien für die Entwicklung der Fusionsenergie.

Die Kerntechnik und ihre Anwendungen ist eine regulierte Technik. Sie unterliegt in Deutschland dem Atomgesetz[3] und wird von Aufsichtsbehörden überwacht und kontrolliert. Dies gilt auch für andere Länder, beispielsweise die Nuclear Regulatory Commission (NRC) in den USA. Wie auch in anderen Technologiebranchen, wie z. B. der Luftfahrt, verwendet auch die Kerntechnik verschiedenen technische Normen, darunter bspw. verschiedene VGB-Normen.[4] Dies sind eine Reihe von Standards für Materialien, für die Herstellung, für die Methoden (z. B. Simulation) und Prozesse zur Entwicklung, für die Sicherheit usw.[5][6][7] Die Kerntechnik grenzt sich von der Uranwirtschaft ab, welche primär die Beschaffung, die technischen und ökonomischen Aspekte im Bereich der Grundmaterialien im nuklearen Brennstoffkreislauf abdeckt.

Hauptquartier der Internationalen Atomenergie-Organisation (IAEO, englisch: IAEA) in Wien, Österreich

Die wissenschaftliche Geschichte der Kerntechnik beginnt mit der Entdeckung der Kernspaltung und der Erforschung der Atomkerne. In den 1940er Jahren standen militärische Zwecke im Vordergrund. Ab dem Ende des 2. Weltkrieges bzw. ab den 1950er Jahren wurde durch die Atoms for Peace Rede, durch die Genfer Atomkonferenzen und die Gründung 1957 der Internationalen Atomenergie-Organisation (IAEO bzw. englisch: IAEA) der Übergang zur friedlichen und kommerziellen Nutzung der Kernenergie geebnet.[8] In Europa wurde 1957 Euratom gegründet. Andere Länder, wie z. B. Indien, haben ebenfalls seit den 1950er Jahren ihre Kernenergieprogramme weiterentwickelt.

Antriebstechnik

[Bearbeiten | Quelltext bearbeiten]

Ein Nebenbereich der Kerntechnik ist die Nutzung der Kernenergie für Antriebe, wobei je nach Art der Anwendung sehr unterschiedliche Technologien zum Einsatz kommen. Hauptanwendungen finden sich bei Reaktoren (Kraftwerke) für Schiffe (Atom-U-Boote, Eisbrecher und Flugzeugträger). Auch werden dezentrale, schwimmende Kernkraftwerk geplant.

Brennstoff- und Abfallbehandlung

[Bearbeiten | Quelltext bearbeiten]

Die Kernbrennstofftechnik befasst sich mit der Gewinnung und Aufbereitung der notwendigen Kernbrennstoffe für Kernkraftwerke und -waffen sowie die Wiederaufarbeitung von Brennstoff nach dem Gebrauch.

Ein weiteres Fachgebiet innerhalb der Kerntechnik ist die Behandlung und die Lagerung von radioaktiven Abfällen, die beim Betrieb von kerntechnischen Anlagen aller Art – nicht nur Kernkraftwerken – anfallen, sowie der Rückbau kerntechnischer Anlagen nach der Stilllegung.

Chemische Prozesse und Technologie

[Bearbeiten | Quelltext bearbeiten]

Mit der Kerntechnik sind eine Vielzahl nuklear-chemischer Techniken und Prozesse sowie entsprechende Entwicklung und Betrieb von Anlagen (bspw. Wiederaufarbeitungsanlagen) verbunden.[9]

Dekommissionierung / Rückbau / Entsorgung / Transport

[Bearbeiten | Quelltext bearbeiten]

Der Rückbau (englisch: Nuclear decommissioning) und die Entsorgung (englisch: Nuclear waste management) alter und ausgedienter Anlagen ist ein Spezialgebiet der Kerntechnik.[10] Es hat die Aufgabe, die Anlagen fachgerecht und sicher zurück zu bauen. Dazu zählen auch kontaminierte Anlagen, Teilen oder (Kern-)Material, welches sicherheitsgerecht zu entsorgen ist. Ebenfalls spielt der Transport und die Aufbewahrung von Kernbrennstoffen eine wichtige Rolle.[11] Die ehemals für Kernanlagen genutzten Flächen, falls keine andere Verwendung besteht, sollen dann zu ihrem ursprünglichen Zustand zurückgeführt werden. Es gibt eine Vielzahl von Anlagen, die bereits zurückgebaut wurden oder sich noch im Rückbau befinden. Dazu zählen stillgelegte Forschungsreaktoren, Prototypenanlagen, Kernreaktoren bzw. Kernkraftwerke (z. B. Dounreay), militärische Anlagen (z. B. Rocky Flats), der Rückbau von chemischen Prozessanlagen usw. Das Fachgebiet ist multidisziplinär und erfordert Fachkenntnisse aus anderen Teilgebieten.

Weitgehend unabhängig von der Kernenergietechnik auf Basis der Kernspaltung (Fission) ist die zivile Energiegewinnung durch Kernverschmelzung (Fusion), die sich noch im Erforschungsstadium befindet. Diese Technik beruht auf einem grundlegend unterschiedlichen Kernreaktionen und erfordert daher völlig andere Anlagen und Verfahren. Experten sehen zwar ein großes Entwicklungspotential für diese Technik, erwarten aber eine Bereitschaft für die großtechnische Nutzung frühestens um 2050.

Kernenergietechnik

[Bearbeiten | Quelltext bearbeiten]
Das Kernkraftwerk Bruce in Kanada, eines der leistungsstärksten der Welt

Das Feld innerhalb der Kernenergietechnik (und wohl auch der gesamten Kerntechnik) mit der derzeit größten Bedeutung für den Menschen ist die Nutzung der freigesetzten Energie von Kernspaltungsprozessen für die zivile Energieversorgung in Kernkraftwerken. Die Reaktortechnik beschreibt das ‚Herz‘ dieser Kraftwerke, nebst den thermodynamischen Prozessen (Fachgebiet Thermohydraulik), der Dampfturbine und dem Turbogenerator. Die Kernspaltungstechnologie ist seit Jahrzehnten großtechnisch erprobt und derzeit (Stand 2023) in mehr als 400 Kraftwerksreaktoren weltweit im Einsatz.[12] Dabei basieren 2/3 der Anlagen auf dem Druckwasserreaktor. Besondere Bedeutung kommt bei der Kernspaltungstechnik der Überwachung der Anlagensicherheit durch Anlagenerrichter, -betreiber, Behörden und Sachverständige zu.

Kernwaffentechnik

[Bearbeiten | Quelltext bearbeiten]

Eine andere Form der Nutzung der Kernenergie, jedoch in ihrer zerstörerischen Form, ist die Kernwaffentechnik. Diese befasst sich mit der Entwicklung von Sprengsätzen auf der Basis von Kernspaltung („klassische Atombombe“) und -fusion (Wasserstoffbombe). Solche Waffen dienen überwiegend militärischen Zwecken, nur ganz vereinzelt erfolgte eine zivile Nutzung. Das Wissen aus der thermonuklearen Forschung (ab 1950er Jahren, speziell auch Plasmaphysik) gilt als Vorlage für die Erforschung der kontrollierten Kernfusion.

Radionuklidtechnik

[Bearbeiten | Quelltext bearbeiten]
PET-Scanner aus der Nuklearmedizin

Ein vielfältiges Nebenfeld der Nukleartechnik ist die Nutzung der ionisierenden Strahlung von Radionukliden. Es ergeben sich hier die unterschiedlichsten Anwendungsmöglichkeiten in Medizin, Industrie und Forschung.[13][14]

Das wohl wichtigste Anwendungsgebiet bildet hierbei die Medizintechnik, wo Radionuklide und deren Strahlung in der Radiologie und der Nuklearmedizin sowohl in der Diagnostik als auch in der Behandlung von Krankheiten zum Einsatz kommen.

In der Medizintechnik, aber auch in der Werkstoffprüfung und in anderen Industrie- und Forschungszweigen kommen vielfältige kernphysikalische Mess-, Diagnose- und Analyse- und Prüftechniken zum Einsatz.

Weitere Anwendungen für Radionuklide und deren Strahlung sind beispielsweise die Lebensmittelkonservierung durch Bestrahlung, Ionisationsrauchmelder, Tritiumgaslichtquellen und Leuchtfarben, Radionuklidbatterien und -heizelemente, Betavoltaik und viele andere mehr.

Strahlenschutztechnik

[Bearbeiten | Quelltext bearbeiten]

Im weiteren Sinne zur Nukleartechnik wird auch der Strahlenschutz gezählt, der in allen oben genannten Bereichen berücksichtigt wird. Dieser befasst sich nicht direkt mit der Nutzung der Radioaktivität, sondern im Gegenteil mit der Minderung der negativen Auswirkungen radioaktiver und sonstige ionisierende Strahlung künstlichen oder natürlichen Ursprungs. Die Strahlenschutztechnik entwickelt auf der Basis der Erkenntnisse von Strahlenbiologie und der Radioökologie Techniken zur Minderung oder Vermeidung schädlicher Einwirkung auf den menschlichen Organismus und die Umwelt.

Unternehmen und Hersteller, Organisationen

[Bearbeiten | Quelltext bearbeiten]

Hinweis: Der Fokus der Auswahl liegt hier auf Endausrüster (OEM). Eine Vielzahl von Dienstleistungs- und Zulieferunternehmen existiert oder hat existiert, z. B. aus der Stahl- bzw. Metallindustrie, Anlagenbau, Bergbauunternehmen, Ingenieurwesen, aus der Chemieindustrie, Energieversorger, usw. Die Liste erhebt keinen Anspruch auf Vollständigkeit oder Aktualität, ob die jeweiligen Firmen noch Leistungen in der Kerntechnik anbieten. Stand 2023.

Bekannte Industrieunternehmen für Kerntechnikprodukte waren seit den ersten Jahrzehnten nach den Genfer Gesprächen zur friedlichen Nutzung der Atomenergie die Hersteller:

Weitere Unternehmen sind die Enrichment Technology Company (ETC), die BGZ Gesellschaft für Zwischenlagerung, die Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) oder die EWN Entsorgungswerk für Nuklearanlagen.

International sind aus den Atomenergie-Nationen wie z. B. den USA, UK, Frankreich, China usw. die folgenden Hersteller bekannt:

Berufsausbildung und -tätigkeit

[Bearbeiten | Quelltext bearbeiten]

Der Bedarf an Fachkräften für den Bereich der Kerntechnik wird von Fachleuten auch langfristig als hoch eingeschätzt. Dies gilt auch für Länder, die einen Atomausstieg beschlossen haben (Deutschland, Schweiz, …), denn für kerntechnische Anlagen, die mittelfristig stillgelegt werden sollen, besteht dennoch weiterhin ein hoher Personalbedarf für den verbleibenden Betrieb, die Überwachung, die geordnete Stilllegung und den Rückbau der Anlagen sowie die Behandlung der Abfälle. Der hohen Nachfrage nach Fachkräften stehen ein überalterter Personalbestand und eine sinkende Zahl an Bewerbern gegenüber,[15] sodass die Berufsaussichten für den Nachwuchs entsprechend gut bewertet werden.[16]

Wegen des anspruchsvollen theoretischen Hintergrundes und der Komplexität des Fachgebietes sowie der hohen Verantwortung für den sicheren Umgang mit den Risiken der Technik wird für eine berufliche Tätigkeit im Bereich der Kerntechnik in der Regel eine höhere Ausbildung in Form eines Hochschulstudiums oder einer Weiterbildung zur Fachkraft vorausgesetzt.

Das Studium der Kerntechnik gehört meist zu den Ingenieurwissenschaften, entweder als eigenständiger Studiengang oder als Studienrichtung innerhalb eines anderen Faches, meist des Maschinenbaus oder der Verfahrenstechnik. Alternativ kann der Einstieg über eine entsprechende Spezialisierung in naturwissenschaftlichen Studiengängen (Kernphysik in der Physik, Kernchemie in der Chemie, …) erfolgen.

Auch im Bereich der Ausbildungsberufe gibt es Weiterbildungsangebote im Bereich der Kerntechnik, so etwa eine Spezialisierungsrichtung Kerntechnik für Kraftwerker und Kraftwerksmeister oder die der Fachkraft für Dekontamination / Radioaktive Stoffe (Dekontfachkraft).

Informationen zu Studien- und Ausbildungsmöglichkeiten im Bereich Kerntechnik bieten die Online-Datenbanken BERUFENET[17] und KURSNET[18] der Bundesagentur für Arbeit.

Studienangebote in Deutschland (Beispiele)

[Bearbeiten | Quelltext bearbeiten]

Hinweis: Die Liste ist insofern unvollständig, als keine der Kerntechnik naheliegenden Themen der Forschung oder Entwicklung berücksichtigt werden. Dazu zählen Beschleunigertechnologie, Medizinphysik, nukleare Entsorgungstechnologien, Abrüstung und Kontrolle, usw. Eine Vielzahl an Lehrmöglichkeiten bieten weiterhin die Länder USA, Frankreich und Großbritannien. Es wird empfohlen, aktuelle Suchmaschinen für Studiengänge zu nutzen. Die List ist Stand 2023. Vergleiche auch die Institute weiter unten.

  • Studiengang Nukleartechnologien an der TUM[19]
  • Studiengang Nuclear Safety Engineering (Master) an der RWTH[20]
  • Lehrstuhl für Reaktorsicherheit und -technik (LRST)[21], RWTH Aachen
  • FH Aachen/Jülich:
    • Vertiefungsrichtung Energietechnik (bis ca. 2011: Kerntechnik) im Studiengang Maschinenbau (B.Eng);[22]
    • European Master of Science in Nuclear Applications (M.Sc) an der FH Aachen/Jülich[23]

Studienangebote (Listen)

[Bearbeiten | Quelltext bearbeiten]

Rückgang Studienfächer

[Bearbeiten | Quelltext bearbeiten]

In Deutschland hat im Zuge des Atomausstiegs Deutschlands das Interesse an einer Tätigkeit in der Kerntechnik stark abgenommen.[26] Infolge der zurückgehenden Nachfrage wurde auch das Ausbildungsangebot an deutschen Hochschulen deutlich reduziert, obwohl es an deutschen Hochschulen noch zahlreiche Lehrstühle gibt, die auf dem Gebiet der klassischen Kerntechnik tätig sind.[27] Nur noch wenige Hochschulen bieten im Bereich Kerntechnik Studiengänge, Vertiefungsrichtungen oder Schwerpunkte an.

Des Weiteren wird in der deutschen Hochschulpolitik die „Angewandte Kernphysik“ als Kleines Fach eingestuft. Eine Übersicht über die Fachstandorte und die Entwicklung der Zahl der Professuren gibt eine Karte der Arbeitsstelle Kleine Fächer.[28]

Institute und Forschungseinrichtungen (Auswahl)

[Bearbeiten | Quelltext bearbeiten]

Hinweis: Die Liste ist nur eine Auswahl mit Beispielen und erhebt keine Anspruch auf Vollständigkeit. Des Weiteren findet ggfs. eine Verschmischung von Kernphysik-naher und Kerntechnik-naher Forschung statt. Wie die einzelnen Institute sich abgrenzen und ob diese auch Studienangebote anbieten muss im Einzelfall geprüft werden. (Stand 2023)

  • Institut für Energie und Klimaforschung, dort Nukleare Entsorgung (IEK-6) des FZ Jülich[29]
  • JRC Karlsruhe (ehem. Europäisches Institut für Transurane (ITU)) am KIT Karlsruhe
  • Institut für Nukleare Entsorgung (INE)[2] am KIT Karlsruhe
  • Institut für Angewandte Thermofluidik (IATF)[30] des KIT Karlsruhe, dort die Einrichtungen:
    • Professur für Innovative Reaktorsysteme
    • Professur für Fusions- und Reaktortechnik
  • Institut für Neutronenphysik und Reaktortechnik (INR)[31] des KIT Karlsruhe, siehe dort die verschiedenen Einrichtungen
  • Professur für Wasserstoff- und Kernenergietechnik (Institut für Energiewesen) an der TU Dresden[32]
  • Spezialisierungsfach Kernenergietechnik am Institut für Kernenergetik und Energiesysteme (IKE) der Universität Stuttgart[33]

Dazu zählen verschiedene Großforschungseinrichtungen, wie z. B. das französische Commissariat à l’énergie atomique et aux énergies alternatives (CEA), das U. S. Department of Energy (DOE) (Vorgänger-Organisation: Atomic Energy Commission) und seine Sub-Organisationen, die englische Atomic Energy Research Establishment (A.E.R.E), bzw. ihre Nachfolgeorganisation United Kingdom Atomic Energy Authority und viele weitere Einrichtungen.

Siehe auch die Labore im Artikel Kernphysik.

Verbände, Fachgesellschaften, Interessensgemeinschaften (Auswahl)

[Bearbeiten | Quelltext bearbeiten]

Hinweis: Weltweit existieren verschiedene Verbände, Lobbyorganisationen oder Organisationen, die sich mit Kerntechnik beschäftigen. Die Liste ist unvollständig und gibt nur einen groben Überblick, über bekannte und große Organisationen. Historische Organisationen, auch staatliche wie z. B. die verschiedenen Atomkommissionen (AEC) werden hier nicht aufgezählt. Außerdem werden keine Atomaufsichtsorgane aufgezählt, siehe dort.

Atomenergiegegner

[Bearbeiten | Quelltext bearbeiten]

Kritiker lehnen die Kerntechnik – insbesondere die Kernenergie- und -waffentechnik – wegen der großen potentiellen Schäden für die Menschheit, Natur und Umwelt ab. Nach Einschätzung der Gegner sind die mit der Kernenergietechnik verbundenen Gefahren zu gravierend und die Risiken nicht ausreichend beherrschbar. Als Beleg führen sie die verschiedenen teils schweren Unfälle an, die sich in der Vergangenheit bereits in kerntechnischen Anlagen ereignet haben. Sie verlangen daher, auf die Nutzung der Kernkraft zu verzichten.

Um die Verbreitung von Anlagen, Geräten, Material usw. zum möglichen Bau von Kernwaffen zu unterbinden, wurde die Gruppe der Kernmaterial-Lieferländer als Reaktion auf die erste von Indien entwickelte und gezündete Atombombe gegründet.[39][40]

Einsteiger, Interessierte und Schüler

[Bearbeiten | Quelltext bearbeiten]
  • Markus Borlein: Kerntechnik (= Vogel Fachbuch). 2., überarb. Auflage. Vogel, Würzburg 2011, ISBN 978-3-8343-3253-0.
  • Martin Volkmer: Radioaktivität und Strahlenschutz. INFORUM Verlags- und Verwaltungsgesellschaft, 2012 (kernd.de).
  • Martin Volkmer: Kernenergie Basiswissen. INFORUM Verlags- und Verwaltungsgesellschaft, 2013 (kernd.de).
  • Winfried Koelzer: Lexikon zur Kernenergie. Ausgabe Januar 2019. KIT Scientific Publishing, 2019, doi:10.5445/KSP/1000088491 (Open Access).

Moderne Fachbücher

[Bearbeiten | Quelltext bearbeiten]
  • Bertram Winde, Lotar Ziert: Organisation der Kernforschung und Kerntechnik in der Deutschen Demokratischen Republik (= Kleine Bibliothek der Kerntechnik). VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1961.
  • Robert Gerwin: Atoms in Germany. Econ Verlag, 1964 (englisch).
  • Schweizerische Gesellschaft der Kernfachleute: Geschichte der Kerntechnik in der Schweiz: Die ersten 30 Jahre 1939-1969 (= Alte Forscher - aktuell. Band 3). Olynthus, 1992, ISBN 3-907175-16-6.
  • Wolfgang D. Müller: Geschichte der Kernenergie in der Bundesrepublik Deutschland. Schäffer, Verl. für Wirtschaft u. Steuern, Stuttgart 1990, ISBN 978-3-8202-0564-0.

Ältere Fachbücher

[Bearbeiten | Quelltext bearbeiten]
  • Harold Etherington (Hrsg.): Nuclear Engineering Handbook. McGraw-Hill Book Company, 1958 (englisch).
  • Wolfgang Riezler, Wilhelm Walcher (Hrsg.): Kerntechnik. B. G. Teubner, Stuttgart 1958.
  • R.L. Murray: Einführung in die Kerntechnik (= Hochschulbücher für Physik. Band 11). Deutscher Verlag der Wissenschaften, Berlin 1959 (Neuauflage ISBN 978-0-12-812881-7).
  • Gerhard Blumentritt, Lothar Schwaar: Kerntechnik im Blickpunkt. VEB Fachbuchverlag Leipzig, Leipzig 1979.
  • Hans Michaelis, Carsten Salander (Hrsg.): Handbuch Kernenergie. 4. Auflage. VWEW-Verlag, Frankfurt am Main 1995, ISBN 3-8022-0426-3.
Commons: Kerntechnik – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE). Helmholtz-Gemeinschaft, 2023, abgerufen am 3. Juli 2023 (deutsch).
  2. a b Institut für Nukleare Entsorgung (INE). KIT, 17. Februar 2021, abgerufen am 3. Juli 2023 (deutsch).
  3. Atomgesetz AtG - Atomic Energy Act (Germany). Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV), 2016, abgerufen am 16. August 2023 (In englischer und deutscher Sprache in einem Dokument; PDF siehe dort).
  4. Medienverzeichnis – vgbe energy. vgbe energy e. V., abgerufen am 10. September 2023 (deutsch).
  5. Safety standards. IAEA, 18. Februar 2019, abgerufen am 3. Juli 2023 (englisch).
  6. ISO 19443:2018. ISO.org, 13. Juni 2018, abgerufen am 3. Juli 2023 (englisch, Nur ein Beispiel.).
  7. Clare Naden: New standard to improve safety in the nuclear sector. 13. Juni 2018, abgerufen am 3. Juli 2023 (englisch).
  8. History. IAEA, 8. Juni 2016, abgerufen am 20. September 2023 (englisch).
  9. K. L. Nash, J. C Braley: 1 - Chemistry of radioactive materials in the nuclear fuel cycle. In: Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment (= Woodhead Publishing Series in Energy). Woodhead Publishing, 2011, ISBN 978-1-84569-501-9, S. 3–22 (englisch, sciencedirect.com [abgerufen am 1. August 2023]).
  10. Nuclear Decommissioning, Waste Management, and Environmental Site Remediation. Elsevier, 2003, ISBN 978-0-7506-7744-8, doi:10.1016/b978-0-7506-7744-8.x5000-0 (englisch, elsevier.com [abgerufen am 1. August 2023]).
  11. Behälter für radioaktive Stoffe - Beispiele für Behälterprüfungen. In: Bundesanstalt für Materialforschung und -prüfung (BAM). Bundesministerium für Wirtschaft und Klimaschutz, abgerufen am 12. September 2023.
  12. The Database on Nuclear Power Reactors (PRIS). IAEA, abgerufen am 3. Juli 2023 (englisch).
  13. H. Vogg, H. Braun, R. Löffel, A. Lubecki, A. Merz, J. Schmitz, J. Schneider, J. Vehlow: Anwendung der Radionuklidtechnik in Chemie und Verfahrenstechnik. In: Journal of Radioanalytical and Nuclear Chemistry. Band 32, Nr. 2, September 1976, S. 495–510, doi:10.1007/BF02517520.
  14. Lehrstuhl für Nukleartechnik TUM School of Engineering and Design. Lehrstuhl für Nukleartechnik, Technische Universität München, abgerufen am 18. Mai 2024.
  15. greenpeace magazin: Das letzte Aufgebot. 25. Dezember 2011, abgerufen am 2. Juli 2023 (Archiviert).
  16. Hermann Horstkotte: Kerntechnik - Studiengang mit Restrisiko. ZEIT ONLINE, 25. März 2011, abgerufen am 4. Oktober 2011.
  17. BERUFENET - Berufsinformationen einfach finden. Bundesagentur für Arbeit, abgerufen am 2. Juli 2023.
  18. KURSNET - Das Portal für berufliche Aus- und Weiterbildung. Bundesagentur für Arbeit, abgerufen am 4. Oktober 2011.
  19. Nukleartechnologien. TUM, 7. März 2022, abgerufen am 2. Juli 2023.
  20. Nuclear Safety Engineering M.Sc. Studiengangbeschreibung. RWTH Aachen, abgerufen am 11. Februar 2014.
  21. LRST - Lehrstuhl für Reaktorsicherheit und Reaktortechnik an der RWTH Aachen, Univ.-Prof. Dr. rer. nat. Hans-Josef Allelein. RWTH, 3. Juni 2018, abgerufen am 2. Juli 2023 (Webseite archiviert Stand 2018).
  22. Vertiefungsrichtungen. Abgerufen am 3. Juli 2023.
  23. Studieren nuklearer Anwendungen in Jülich. Abgerufen am 3. Juli 2023.
  24. Nuklearchemie | Gesellschaft Deutscher Chemiker e. V. Abgerufen am 28. Juli 2023.
  25. Education. In: ENS. 10. Dezember 2018, abgerufen am 2. August 2023 (britisches Englisch).
  26. Monika Schneiders: Kerntechnik studieren nach Fukushima. WDR, 3. Mai 2011, archiviert vom Original (nicht mehr online verfügbar) am 21. Februar 2014;.
  27. Liste deutscher Lehrstühle für Kerntechnik und verwandter Gebiete. www.kernenergie-portal.de, archiviert vom Original (nicht mehr online verfügbar) am 16. September 2011; abgerufen am 28. Dezember 2020.
  28. mainzed-Mainzer Zentrum für Digitalität in den Geistes- und Kulturwissenschaften: Portal Kleine Fächer. Johannes Gutenberg-Universität Mainz, abgerufen am 28. Juli 2023.
  29. Nukleare Entsorgung (IEK-6). In: Institut für Energie- und Klimaforschung (IEK). FZ Jülich, abgerufen am 2. Juli 2023.
  30. KIT - IATF Startseite. KIT, 18. Februar 2022, abgerufen am 2. Juli 2023 (deutsch).
  31. KIT-INR Startseite. KIT, 30. Juni 2023, abgerufen am 2. Juli 2023 (deutsch).
  32. Technische Universität Dresden MW/IET/WKET: Startseite Professur für Wasserstoff- und Kernenergietechnik. Abgerufen am 3. Juli 2023.
  33. Spezialisierungsfach Kernenergietechnik | Institut für Kernenergetik und Energiesysteme | Universität Stuttgart. Abgerufen am 3. Juli 2023.
  34. KIT – TLK – 30 years TLK. In: Tritium Laboratory Karlsruhe. KIT, 19. Mai 2023, abgerufen am 21. August 2023 (britisches Englisch).
  35. kernfachleute.ch. SGK, SNS, abgerufen am 3. Juli 2023 (deutsch).
  36. 首页_中国核学会. Chinese Nuclear Society, abgerufen am 30. Juli 2023 (chinesisch).
  37. Home. In: French Nuclear Society. Sfen, abgerufen am 16. Juli 2023 (amerikanisches Englisch).
  38. Homepage. In: Women in Nuclear. IAEA, abgerufen am 19. Juli 2023 (amerikanisches Englisch).
  39. Mark Hibbs: A More Geopoliticized Nuclear Suppliers Group. Carnegie Endowment for International Peace, 14. Dezember 2017, abgerufen am 5. August 2023 (englisch).
  40. George Perkovich: India's nuclear bomb: the impact on global proliferation (= A Philip E. Lilienthal book). Univ. of California Press, Berkeley, Calif. 2000, ISBN 978-0-520-21772-0 (englisch, archive.org [abgerufen am 5. August 2023]).