Die Kardioide oder Herzkurve (von griechischκαρδία‚Herz‘) ist eine ebeneKurve, genauer gesagt eine algebraische Kurve 4. Ordnung, die ihren Namen wegen ihrer Form erhielt.
Lässt man auf der Außenseite eines gegebenen festen Kreises mit Mittelpunkt M und Radius einen weiteren Kreis mit dem gleichen Radius abrollen und betrachtet man dabei einen bestimmten Punkt P auf dem abrollenden Kreis, so beschreibt P eine Kardioide. Damit erweist sich die Kardioide als spezielle Epizykloide.
Der Beweis der Parameterdarstellung lässt sich mit Hilfe komplexer Zahlen und ihrer Darstellung als Gaußsche Zahlenebene leicht führen. Die Rollbewegung des schwarzen Kreises auf dem blauen Kreis kann man in die Hintereinanderausführung zweier Drehungen zerlegen. Die Drehung eines Punktes (komplexe Zahl) um den Nullpunkt mit dem Winkel wird durch die Multiplikation mit bewirkt.
Die Drehung um den Punkt ist .
Die Drehung um den Punkt ist .
Ein Kardioidenpunkt entsteht durch Drehung des Nullpunktes um und anschließende Drehung um jeweils um den Winkel :
Die Kardioide ist das Bild einer Parabel unter einer Kreisspiegelung (Inversion), bei der das Inversionszentrum im Brennpunkt der Parabel liegt (s. Bild).
Im Beispiel des Bildes haben die Erzeugerkreise den Radius . Die gespiegelte Parabel genügt in x-y-Koordinaten der Gleichung .
Bildet man bei der Inversion der Parabel im vorigen Abschnitt die Tangenten mit ab, so gehen sie als Geraden in eine Schar von Kreisen durch das Inversionszentrum (Nullpunkt) über. Eine genauere Untersuchung (Nachrechnen) zeigt: Die Mittelpunkte der Kreise liegen alle auf dem festen Erzeugerkreis (cyan) der Kardioide. Der Erzeugerkreis ist das Bild der Leitlinie der Parabel. Da sich auf der Leitlinie einer Parabel die Tangenten senkrecht schneiden und die Kreisspiegelung winkeltreu ist, schneiden sich Kreise der Kreisschar auf dem Erzeugerkreis auch senkrecht.
Die hier beschriebene Eigenschaft der Kreisschar erlaubt eine einfache Methode um eine Kardioide zu zeichnen:
1) Wähle einen Kreis k und einen Punkt O darauf,
2) zeichne Kreise durch O mit Mittelpunkte auf k,
3) zeichne die Einhüllende dieser Kreise.
Beweis mit Einhüllenden-Bedingung
Es sei durch
eine Schar von impliziten Kurven mit dem Scharparameter gegeben. Die Einhüllende (oder Hüllkurve) besteht aus Punkten , die für festes Lösungen des i.a. nicht linearen Gleichungssystems
Es sei k der Kreis mit Mittelpunkt und Radius . k hat die Parameterdarstellung . Die Kreisschar, deren Mittelpunkte auf k liegen und die durch den Punkt gehen, lassen sich implizit durch
beschreiben. Multipliziert man die Klammern aus, ergibt sich
Die 2. Scharbedingung ist
Man prüft leicht nach, dass die Punkte der Kardioide mit der Parameterdarstellung
das nicht lineare Gleichungssystem erfüllt. Der Scharparameter ist hier identisch mit dem Winkel-Parameter der Kardioide.
Eine ähnlich einfache Methode, eine Kardioide als Einhüllende einer Geradenschar zu konstruieren, geht auf L. Cremona zurück:
Zeichne einen Kreis, unterteile ihn gleichmäßig mit Punkten (s. Bild) und nummeriere diese fortlaufend.
Zeichne die Sehnen: . (Man kann es so ausdrücken: Der zweite Punkt der Sehne bewegt sich mit doppelter Geschwindigkeit.)
Die Einhüllende dieser Strecken ist eine Kardioide.
Beweis
Im Folgenden werden die trigonometrischen Formeln für
verwendet. Um die Rechnungen einfach zu halten, wird der Beweis für die Kardioide mit der Polardarstellung geführt (s. Abschnitt anders orientierte Kardioiden).
Gleichung der Tangente
an die Kardioide mit der Polardarstellung :
Aus der Parameterdarstellung
berechnet man zunächst den Normalenvektoren . Die Gleichung der Tangente ist dann:
Mit Hilfe der trigonometrischen Formeln und der anschließenden Division durch lässt sich die Gleichung der Tangente so schreiben:
Gleichung der Sekante
an den Kreis mit Mittelpunkt und Radius : Für die Gleichung der Sekante durch die beiden Punkte ergibt sich:
Mit Hilfe der trigonometrischen Formeln und der anschließenden Division durch lässt sich die Gleichung der Sekante so schreiben:
Die beiden Winkel haben zwar verschiedene Bedeutungen (s. Bild), für ergibt sich aber dieselbe Gerade. Also ist auch jede obige Sekante an den Kreis eine Tangente der Kardioide und
die Kardioide ist die Einhüllende der Kreissehnen.
Bemerkung:
Der Beweis lässt sich auch mit den Einhüllen-Bedingungen einer impliziten Kurvenschar (s. vorigen Abschnitt) führen. Dabei beschreibt
die Schar der Sekanten an den Kreis (s. o.)
Beide Gleichungen sind für festen Parameter t Geradengleichungen. Der Schnittpunkt
der Geraden ist ein Punkt der Kardioide mit der Polardarstellung . (Bei Umformungen müssen immer wieder trigonometrische Formeln (s. o.) benutzt werden.)
Die vorigen Überlegungen liefern auch einen Beweis dafür, dass als Kaustik eines Kreises mit der Lichtquelle auf dem Kreis eine Kardioide auftritt.
Gehen in der Ebene von einem Punkt eines spiegelnden Kreises Lichtstrahlen gemäß der Abbildung aus, so sind die im Innern des Kreises reflektierten Lichtstrahlen die Tangenten einer Kardioide. (s. Abschnitt Kardioide in Optik und Akustik)
Beweis
Der Kreis habe (wie im vorigen Abschnitt) den Mittelpunkt und den Radius . Der Kreis hat dann die Parameterdarstellung
Die Tangente im Kreispunkt hat den Normalenvektor . Der reflektierte Strahl muss dann (laut Abbildung) den Normalenvektor haben und durch den Kreispunkt gehen. Der reflektierte Strahl liegt also (s. vorigen Abschnitt) auf der Gerade mit der Gleichung
die wiederum Tangente an die Kardioide mit der Polardarstellung
des vorigen Abschnitts ist.
Bemerkung: Mehrfachreflexionen am Kreis werden bei diesen Überlegungen üblicherweise nicht berücksichtigt.
Die Lichterscheinung (Kaustik) in einer Kaffeetasse, die von Licht aus einer am Tassenrand platzierten Lichtquelle getroffen wird, ist eine Kardioide. Die Kaustik, die von parallel eintreffendem Licht erzeugt wird, wird allerdings durch eine andere Kurve (Nephroide) beschrieben; in anderen Fällen entsteht eine Mischform.
Die Evolute einer ebenen Kurve ist der geometrische Ort aller Krümmungsmittelpunkte dieser Kurve. Für eine parametrisierte Kurve mit Krümmungsradius hat die Evolute die Parameterdarstellung
wobei die geeignet orientierte Einheitsnormale ist. ( zeigt zu dem Krümmungsmittelpunkt hin.)
Für eine Kardioide gilt:
Die Evolute einer Kardioide ist wieder eine Kardioide ein Drittel so groß (siehe Bild).
Beweis
Für die Kardioide mit der Parameterdarstellung
ist die Einheitsnormale
und der Krümmungskreisradius (s. oben)
Also hat die Evolute die Parameterdarstellung
Diese Gleichungen beschreiben eine Kardioide, die ein Drittel so groß wie die gegebene Kardioide, um 180 Grad gedreht und um entlang der x-Achse verschoben ist.
Eine Orthogonaltrajektorie einer Kurvenschar ist eine Kurve, die jede Kurve der Schar senkrecht schneidet. Für Kardioiden gilt:
Die Orthogonaltrajektorien der Kardioidenschar mit den Gleichungen
sind die Kardioiden mit den Gleichungen
(Die zweite Schar entsteht durch Spiegelung der ersten an der y-Achse. Siehe Bild.)
Beweis:
Ist eine Kurve in Polarkoordinaten durch eine Funktion gegeben, so besteht zwischen den kartesischen Koordinaten und den Polarkoordinaten eines Punktes die folgende Beziehung:
und damit
Dividiert man die letzten beiden Gleichungen erhält man die Steigung in kartesischen Koordinaten:
Für die Kardioiden mit den Gleichungen bzw. ergibt sich
bzw.
(Die Steigungen hängen jeweils nur von ab, und nicht mehr von den Parametern !)
Hieraus ergibt sich
D. h. jede Kurve der einen Schar schneidet jede Kurve der anderen Schar senkrecht.
Wählt man andere Lagen der Kardioide im Koordinatensystem so ändern sich die Gleichungen, die sie beschreiben. Im Bild sind die 4 üblichen Orientierungen und ihre zugehörigen Polardarstellungen zu sehen.