Deltoidalhexakontaeder
Das Deltoidalhexakontaeder (auch Deltoidhexakontaeder genannt) ist ein konvexes Polyeder, das sich aus 60 Deltoiden zusammensetzt und zu den Catalanischen Körpern zählt. Es ist dual zum Rhombenikosidodekaeder und hat 62 Ecken sowie 120 Kanten.
Entstehung
[Bearbeiten | Quelltext bearbeiten]Durch Verbinden der Mittelpunkte vierer Kanten, die in jeder Raumecke des Rhombenikosidodekaeders zusammenstoßen, entsteht ein Trapez, dessen Umkreis gleichzeitig Inkreis des Deltoids, der Begrenzungsfläche des Deltoidalhexakontaeders, ist. Bei diesem speziellen Typ sind alle Flächenwinkel gleich groß (≈ 154°), und es existiert ein einheitlicher Kantenkugelradius.
Sei die Kantenlänge des Rhombenikosidodekaeders, so sind die resultierenden Seitenlängen des Deltoids gegeben durch
Die Seitenlängen des Deltoids stehen somit im folgenden Verhältnis zueinander:[1]
Verwandte Polyeder
[Bearbeiten | Quelltext bearbeiten]-
Dualer Körper: Rhombenikosidodekaeder
-
Einbeschriebenes Dodekaeder
-
Einbeschriebenes Ikosaeder
-
Einbeschriebenes Ikosidodekaeder
Formeln
[Bearbeiten | Quelltext bearbeiten]Für das Polyeder
[Bearbeiten | Quelltext bearbeiten]Größen eines Deltoidalhexakontaeders mit Kantenlänge a | |
---|---|
Volumen | |
Oberflächeninhalt | |
Inkugelradius | |
Kantenkugelradius | |
Flächenwinkel ≈ 154° 7′ 17″ |
|
3D-Kantenwinkel ≈ 153° 26′ 6″ |
|
Sphärizität ≈ 0,98161 |
Für das Deltoid
[Bearbeiten | Quelltext bearbeiten]Größen des Drachenvierecks | |
---|---|
Flächeninhalt | |
2. Seitenlänge | |
Kurze Diagonale | |
Lange Diagonale | |
Inkreisradius | |
Seitenwinkel (2) ≈ 86° 58′ 27″ |
|
Fußwinkel (1) ≈ 67° 46′ 59″ |
|
Kopfwinkel (1) ≈ 118° 16′ 7″ |
Anmerkungen
[Bearbeiten | Quelltext bearbeiten]- ↑ Mit a sei die längere der beiden Seiten bezeichnet.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Eric W. Weisstein: Deltoidalhexakontaeder. In: MathWorld (englisch).