default search action
Vikram B. Suresh
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j10]Raghavan Kumar, Vikram B. Suresh, Sachin Taneja, Mark A. Anders, Steven Hsu, Amit Agarwal, Vivek De, Sanu K. Mathew:
A 7-Gbps SCA-Resistant Multiplicative-Masked AES Engine in Intel 4 CMOS. IEEE J. Solid State Circuits 58(4): 1106-1116 (2023) - [c47]Sachin Taneja, Vikram B. Suresh, Raghavan Kumar, Vivek De, Sanu Mathew:
218Kauth/s, 3nJ/auth SCA/ML-Resistant Privacy-Preserving Mutual Authentication Accelerator with a Crypto-Double-Coupled PUF in 4nm class CMOS. VLSI Technology and Circuits 2023: 1-2 - 2022
- [j9]Anuj Dubey, Rosario Cammarota, Vikram B. Suresh, Aydin Aysu:
Guarding Machine Learning Hardware Against Physical Side-channel Attacks. ACM J. Emerg. Technol. Comput. Syst. 18(3): 56:1-56:31 (2022) - [c46]Raghavan Kumar, Vikram B. Suresh, Mark A. Anders, Steven K. Hsu, Amit Agarwal, Vivek K. De, Sanu K. Mathew:
An 8.3-to-18Gbps Reconfigurable SCA-Resistant/Dual-Core/Blind-Bulk AES Engine in Intel 4 CMOS. ISSCC 2022: 1-3 - [c45]Vikram B. Suresh, Chandra S. Katta, Srinivasan Rajagopalan, Tao Z. Zhou, Amit Kumar Patel, Raju Rakha, Nikhil Krishna Gopalakrishna, Sanu Mathew, Ajat Hukkoo:
Bonanza Mine: an Ultra-Low-Voltage Energy-Efficient Bitcoin Mining ASIC. ISSCC 2022: 354-356 - [c44]Raghavan Kumar, Vikram B. Suresh, Sachin Taneja, Mark A. Anders, Steven Hsu, Amit Agarwal, Vivek De, Sanu Mathew:
A 7Gbps SCA-Resistant Multiplicative-Masked AES Engine in Intel 4 CMOS. VLSI Technology and Circuits 2022: 138-139 - 2021
- [j8]Raghavan Kumar, Xiaosen Liu, Vikram B. Suresh, Harish K. Krishnamurthy, Sudhir Satpathy, Mark A. Anders, Himanshu Kaul, Krishnan Ravichandran, Vivek De, Sanu K. Mathew:
A Time-/Frequency-Domain Side-Channel Attack Resistant AES-128 and RSA-4K Crypto-Processor in 14-nm CMOS. IEEE J. Solid State Circuits 56(4): 1141-1151 (2021) - [i1]Anuj Dubey, Rosario Cammarota, Vikram B. Suresh, Aydin Aysu:
Guarding Machine Learning Hardware Against Physical Side-Channel Attacks. CoRR abs/2109.00187 (2021) - 2020
- [j7]Raghavan Kumar, Vikram B. Suresh, Monodeep Kar, Sudhir Satpathy, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram K. Krishnamurthy, Vivek De, Sanu K. Mathew:
A 4900- $\mu$ m2 839-Mb/s Side-Channel Attack- Resistant AES-128 in 14-nm CMOS With Heterogeneous Sboxes, Linear Masked MixColumns, and Dual-Rail Key Addition. IEEE J. Solid State Circuits 55(4): 945-955 (2020) - [c43]Vikram B. Suresh, Raghavan Kumar, Sanu Mathew:
INVITED: A 0.26% BER, Machine-Learning Resistant 1028 Challenge-Response PUF in 14nm CMOS Featuring Stability-Aware Adversarial Challenge Selection. DAC 2020: 1-3 - [c42]Mark A. Anders, Himanshu Kaul, Seongjong Kim, Gregory K. Chen, Raghavan Kumar, Huseyin Ekin Sumbul, Phil C. Knag, Monodeep Kar, Steven K. Hsu, Amit Agarwal, Vikram B. Suresh, Sanu K. Mathew, Ram K. Krishnamurthy, Vivek De:
25.9 Reconfigurable Transient Current-Mode Global Interconnect Circuits in 10nm CMOS for High-Performance Processors with Wide Voltage-Frequency Operating Range. ISSCC 2020: 396-398 - [c41]Steven Hsu, Amit Agarwal, Simeon Realov, Mark A. Anders, Gregory K. Chen, Monodeep Kar, Raghavan Kumar, Huseyin Sumbul, Phil C. Knag, Himanshu Kaul, Vikram B. Suresh, Sanu Mathew, Iqbal Rajwani, Satish Damaraju, Ram Krishnamurthy, Vivek De:
Low-Clock-Power Digital Standard Cell IPs for High-Performance Graphics/AI Processors in 10nm CMOS. VLSI Circuits 2020: 1-2 - [c40]Raghavan Kumar, Xiaosen Liu, Vikram B. Suresh, Harish Krishnamurthy, Mark A. Anders, Himanshu Kaul, Krishnan Ravichandran, Vivek De, Sanu Mathew:
A SCA-Resistant AES Engine in 14nm CMOS with Time/Frequency-Domain Leakage Suppression using Non-Linear Digital LDO Cascaded with Arithmetic Countermeasures. VLSI Circuits 2020: 1-2 - [c39]Raghavan Kumar, Sudhir Satpathy, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Vivek De, Sanu Mathew:
A 435MHz, 2.5Mbps/W Side-Channel-Attack Resistant Crypto-Processor for Secure RSA-4K Public-Key Encryption in 14nm CMOS. VLSI Circuits 2020: 1-2 - [c38]Vikram B. Suresh, Raghavan Kumar, Mark A. Anders, Himanshu Kaul, Vivek De, Sanu Mathew:
A 0.26% BER, 1028 Challenge-Response Machine-Learning Resistant Strong-PUF in 14nm CMOS Featuring Stability-Aware Adversarial Challenge Selection. VLSI Circuits 2020: 1-2
2010 – 2019
- 2019
- [j6]Sudhir Satpathy, Sanu K. Mathew, Raghavan Kumar, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram K. Krishnamurthy, Vivek De:
An All-Digital Unified Physically Unclonable Function and True Random Number Generator Featuring Self-Calibrating Hierarchical Von Neumann Extraction in 14-nm Tri-gate CMOS. IEEE J. Solid State Circuits 54(4): 1074-1085 (2019) - [c37]Amit Agarwal, Steven Hsu, Monodeep Kar, Mark A. Anders, Himanshu Kaul, Raghavan Kumar, Vikram B. Suresh, Sanu Mathew, Ram Krishnamurthy, Vivek De:
A 54% Power-Saving Static Fully-Interruptible Single-Phase-Clocked Shared-Keeper Flip-Flop in 14nm CMOS. A-SSCC 2019: 137-140 - [c36]Sudhir Satpathy, Vikram B. Suresh, Raghavan Kumar, Vinodh Gopal, James Guilford, Kirk Yap, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy, Sanu Mathew:
A 220-900mV 179Mcode/s 36pJ/code Canonical Huffman Encoder for DEFLATE Compression in 14nm CMOS. CICC 2019: 1-4 - [c35]Vikram B. Suresh, Sudhir Satpathy, Raghavan Kumar, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy, Sanu Mathew:
A 225-950mV 1.5Tbps/W Whirlpool Hashing Accelerator for Secure Automotive Platforms in 14nm CMOS. CICC 2019: 1-4 - [c34]Vikram B. Suresh, Sudhir Satpathy, Raghavan Kumar, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy, Vivek De, Sanu Mathew:
A 250Mv, 0.063J/Ghash Bitcoin Mining Engine in 14nm CMOS Featuring Dual-Vcc Sha256 Datapath and 3-Phase Latch Based Clocking. VLSI Circuits 2019: 32- - [c33]Steven Hsu, Amit Agarwal, Monodeep Kar, Mark A. Anders, Himanshu Kaul, Raghavan Kumar, Sudhir Satpathy, Vikram B. Suresh, Sanu Mathew, Ram Krishnamurthy, Vivek De:
A Microwatt-Class Always-On Sensor Fusion Engine Featuring Ultra-Low-Power AOI Clocked Circuits in 14nm CMOS. VLSI Circuits 2019: 50- - [c32]Raghavan Kumar, Vikram B. Suresh, Monodeep Kar, Sudhir Satpathy, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram Krishnamurthy, Vivek De, Sanu Mathew:
A 4900×m2 839Mbps Side-Channel Attack Resistant AES-128 in 14nm CMOS with Heterogeneous Sboxes, Linear Masked MixColumns and Dual-Rail Key Addition. VLSI Circuits 2019: 234- - [c31]Sudhir Satpathy, Vikram B. Suresh, Raghavan Kumar, Vinodh Gopal, James Guilford, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy, Vivek De, Sanu Mathew:
A 1.4GHz 20.5Gbps GZIP decompression accelerator in 14nm CMOS featuring dual-path out-of-order speculative Huffman decoder and multi-write enabled register file array. VLSI Circuits 2019: 238- - 2018
- [c30]Himanshu Kaul, Mark A. Anders, Sanu Mathew, Vikram B. Suresh, Sudhir Satpathy, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
Ultra-Lightweight 548-1080 Gate 166Gbps/W-12.6Tbps/W SIMON 32/64 Cipher Accelerators for IoT in 14nm Tri-gate CMOS. A-SSCC 2018: 1-4 - [c29]Sudhir Satpathy, Sanu Mathew, Vikram B. Suresh, Vinodh Gopal, James Guilford, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
A 280mV 3.1pJ/code Huffman Decoder for DEFLATE Decompression Featuring Opportunistic Code Skip and 3-way Symbol Generation in 14nm Tri-gate CMOS. A-SSCC 2018: 263-266 - [c28]Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Ram Krishnamurthy:
Ultra-low energy circuit building blocks for security technologies. DATE 2018: 391-394 - [c27]Sudhir Satpathy, Sanu Mathew, Vikram B. Suresh, Vinodh Gopal, James Guilford, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Kam Krisnnamurthy:
34.4Mbps 1.56Tbps/W DEFLATE Decompression Accelerator Featuring Block-Adaptive Huffman Decoder in 14nm Tri-Gate CMOS for IoT Platforms. ESSCIRC 2018: 90-93 - [c26]Vikram B. Suresh, Sudhir Satpathy, Sanu Mathew, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
A 230mV-950mV 2.8Tbps/W Unified SHA256/SM3 Secure Hashing Hardware Accelerator in 14nm Tri-Gate CMOS. ESSCIRC 2018: 98-101 - [c25]Mark A. Anders, Himanshu Kaul, Sanu Mathew, Vikram B. Suresh, Sudhir Satpathy, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
2.9TOPS/W Reconfigurable Dense/Sparse Matrix-Multiply Accelerator with Unified INT8/INTI6/FP16 Datapath in 14NM Tri-Gate CMOS. VLSI Circuits 2018: 39-40 - [c24]Sudhir Satpathy, Sanu Mathew, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy, Vivek De:
An All-Digital Unified Static/Dynamic Entropy Generator Featuring Self-Calibrating Hierarchical Von Neumann Extraction for Secure Privacy-Preserving Mutual Authentication in IoT Mote Platforms. VLSI Circuits 2018: 169-170 - [c23]Sudhir Satpathy, Vikram B. Suresh, Sanu Mathew, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
220MV-900MV 794/584/754 GBPS/W Reconfigurable GF(24)2 AES/SMS4/Camellia Symmetric-Key Cipher Accelerator in 14NM Tri-Gate CMOS. VLSI Circuits 2018: 175-176 - 2017
- [j5]Sudhir Satpathy, Sanu K. Mathew, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram K. Krishnamurthy, Vivek K. De:
A 4-fJ/b Delay-Hardened Physically Unclonable Function Circuit With Selective Bit Destabilization in 14-nm Trigate CMOS. IEEE J. Solid State Circuits 52(4): 940-949 (2017) - [c22]Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Ram K. Krishnamurthy:
Energy efficient and ultra low voltage security circuits for nanoscale CMOS technologies. CICC 2017: 1-4 - [c21]Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Ram Krishnamurthy:
Invited paper: Ultra-low energy security circuit primitives for IoT platforms. ISLPED 2017: 1-4 - 2016
- [j4]Sanu K. Mathew, David Johnston, Sudhir Satpathy, Vikram B. Suresh, Paul Newman, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram K. Krishnamurthy:
µRNG: A 300-950 mV, 323 Gbps/W All-Digital Full-Entropy True Random Number Generator in 14 nm FinFET CMOS. IEEE J. Solid State Circuits 51(7): 1695-1704 (2016) - [j3]Vikram B. Suresh, Sandip Kundu:
Managing Test Coverage Uncertainty due to Random Noise in Nano-CMOS: A Case-Study on an SRAM Array. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1): 155-165 (2016) - [c20]Sudhir Satpathy, Sanu Mathew, Vikram B. Suresh, Mark A. Anders, Gregory K. Chen, Himanshu Kaul, Amit Agarwal, Steven Hsu, Ram Krishnamurthy, Vivek De:
A 305mV-850mV 400μW 45GSamples/J reconfigurable compressive sensing engine with early-termination for ultra-low energy target detection in 14nm tri-gate CMOS. A-SSCC 2016: 253-256 - [c19]Sudhir Satpathy, Sanu Mathew, Vikram B. Suresh, Ram Krishnamurthy:
Ultra-low energy security circuits for IoT applications. ICCD 2016: 682-685 - [c18]Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram Krishnamurthy, Vivek De:
A 4fJ/bit delay-hardened physically unclonable function circuit with selective bit destabilization in 14nm tri-gate CMOS. VLSI Circuits 2016: 1-2 - [c17]Sudhir Satpathy, Sanu Mathew, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram Krishnamurthy:
250mV-950mV 1.1Tbps/W double-affine mapped Sbox based composite-field SMS4 encrypt/decrypt accelerator in 14nm tri-gate CMOS. VLSI Circuits 2016: 1-2 - 2015
- [j2]Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Amit Agarwal, Steven Hsu, Gregory K. Chen, Ram Krishnamurthy:
340 mV-1.1 V, 289 Gbps/W, 2090-Gate NanoAES Hardware Accelerator With Area-Optimized Encrypt/Decrypt GF(2 4 ) 2 Polynomials in 22 nm Tri-Gate CMOS. IEEE J. Solid State Circuits 50(4): 1048-1058 (2015) - [j1]Vikram B. Suresh, Wayne P. Burleson:
Entropy and Energy Bounds for Metastability Based TRNG with Lightweight Post-Processing. IEEE Trans. Circuits Syst. I Regul. Pap. 62-I(7): 1785-1793 (2015) - [c16]Sanu Mathew, David Johnston, Paul Newman, Sudhir Satpathy, Vikram B. Suresh, Mark A. Anders, Himanshu Kaul, Gregory K. Chen, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
μRNG: A 300-950mV 323Gbps/W all-digital full-entropy true random number generator in 14nm FinFET CMOS. ESSCIRC 2015: 116-119 - 2014
- [c15]Vikram B. Suresh, Wayne P. Burleson:
Fine grained wearout sensing using metastability resolution time. ISQED 2014: 480-483 - [c14]Vikram B. Suresh, Wayne P. Burleson:
Variation Aware Design of Post-Silicon Tunable Clock Buffer. ISVLSI 2014: 1-6 - [c13]Xiaolin Xu, Vikram B. Suresh, Raghavan Kumar, Wayne P. Burleson:
Post-Silicon Validation and Calibration of Hardware Security Primitives. ISVLSI 2014: 29-34 - [c12]Vikram B. Suresh, Wayne P. Burleson:
REFLEX: Reconfigurable logic for entropy extraction. SoCC 2014: 341-346 - [c11]Sanu Mathew, Sudhir Satpathy, Vikram B. Suresh, Himanshu Kaul, Mark A. Anders, Gregory K. Chen, Amit Agarwal, Steven Hsu, Ram Krishnamurthy:
340mV-1.1V, 289Gbps/W, 2090-gate NanoAES hardware accelerator with area-optimized encrypt/decrypt GF(24)2 polynomials in 22nm tri-gate CMOS. VLSIC 2014: 1-2 - 2013
- [c10]Vikram B. Suresh, Daniele Antonioli, Wayne P. Burleson:
On-chip lightweight implementation of reduced NIST randomness test suite. HOST 2013: 93-98 - [c9]Vikram B. Suresh, Sandip Kundu:
Managing test coverage uncertainty due to thermal noise in nano-CMOS: A case-study on an SRAM array. ICCD 2013: 201-206 - [c8]Vikram B. Suresh, Sandip Kundu:
On analyzing and mitigating SRAM BER due to random thermal noise. ISVLSI 2013: 159-164 - [c7]Vikram B. Suresh, Akshaya Shanmugam, Lekshmi Krishnan, Avinash Bijjal, Mostafizur Rahman, Csaba Andras Moritz:
Design of 8T-nanowire RAM array. NANOARCH 2013: 152-157 - 2012
- [c6]Vikram B. Suresh, Priyamvada Vijayakumar, Sandip Kundu:
On lithography aware metal-fill insertion. ISQED 2012: 200-207 - [c5]Vikram B. Suresh, Wayne P. Burleson:
Robust metastability-based TRNG design in nanometer CMOS with sub-vdd pre-charge and hybrid self-calibration. ISQED 2012: 298-305 - 2011
- [c4]Georg T. Becker, Ashwin Lakshminarasimhan, Lang Lin, Sudheendra Srivathsa, Vikram B. Suresh, Wayne P. Burleson:
Implementing hardware Trojans: Experiences from a hardware Trojan challenge. ICCD 2011: 301-304 - [c3]Vikram B. Suresh, Priyamvada Vijayakumar, Sandip Kundu:
On Screening Reliability Using Lithographic Process Corner Information Gleaned from Tester Measurements. ISVLSI 2011: 248-253 - [c2]Priyamvada Vijayakumar, Vikram B. Suresh, Sandip Kundu:
Lithography aware critical area estimation and yield analysis. ITC 2011: 1-8 - 2010
- [c1]Vikram B. Suresh, Wayne P. Burleson:
Entropy Extraction in Metastability-based TRNG. HOST 2010: 135-140
Coauthor Index
aka: Vivek K. De
aka: Steven K. Hsu
aka: Ram K. Krishnamurthy
aka: Sanu K. Mathew
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-11 21:26 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint