default search action
Sebastian J. Vollmer
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j11]Ashwini Venkatasubramaniam, Bilal A. Mateen, Beverley M. Shields, Andrew T. Hattersley, Angus G. Jones, Sebastian J. Vollmer, John M. Dennis:
Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine. BMC Medical Informatics Decis. Mak. 23(1): 110 (2023) - [j10]Florian Pfisterer, Siyi Wei, Sebastian J. Vollmer, Michel Lang, Bernd Bischl:
Fairness Audits and Debiasing Using \pkg{mlr3fairness}. R J. 15(1): 234-253 (2023) - [c6]Jen Ning Lim, Sebastian J. Vollmer, Lorenz Wolf, Andrew Duncan:
Energy-Based Models for Functional Data using Path Measure Tilting. AISTATS 2023: 1904-1923 - [c5]Tobias Schröder, Zijing Ou, Jen Lim, Yingzhen Li, Sebastian J. Vollmer, Andrew Duncan:
Energy Discrepancies: A Score-Independent Loss for Energy-Based Models. NeurIPS 2023 - [i14]Tobias Schröder, Zijing Ou, Jen Ning Lim, Yingzhen Li, Sebastian J. Vollmer, Andrew B. Duncan:
Energy Discrepancies: A Score-Independent Loss for Energy-Based Models. CoRR abs/2307.06431 (2023) - 2022
- [j9]Raphael Sonabend, Andreas Bender, Sebastian J. Vollmer:
Avoiding C-hacking when evaluating survival distribution predictions with discrimination measures. Bioinform. 38(17): 4178-4184 (2022) - [c4]Sahra Ghalebikesabi, Harry Wilde, Jack Jewson, Arnaud Doucet, Sebastian J. Vollmer, Chris C. Holmes:
Mitigating statistical bias within differentially private synthetic data. UAI 2022: 696-705 - [i13]Jen Ning Lim, Sebastian J. Vollmer, Lorenz Wolf, Andrew Duncan:
F-EBM: Energy Based Learning of Functional Data. CoRR abs/2202.01929 (2022) - [i12]Raphael Sonabend, Florian Pfisterer, Alan Mishler, Moritz Schauer, Lukas Burk, Sebastian J. Vollmer:
Flexible Group Fairness Metrics for Survival Analysis. CoRR abs/2206.03256 (2022) - 2021
- [c3]Harrison Wilde, Jack Jewson, Sebastian J. Vollmer, Chris C. Holmes:
Foundations of Bayesian Learning from Synthetic Data. AISTATS 2021: 541-549 - [c2]James Liley, Samuel R. Emerson, Bilal A. Mateen, Catalina A. Vallejos, Louis J. M. Aslett, Sebastian J. Vollmer:
Model updating after interventions paradoxically introduces bias. AISTATS 2021: 3916-3924 - [i11]Sahra Ghalebikesabi, Harrison Wilde, Jack Jewson, Arnaud Doucet, Sebastian J. Vollmer, Chris C. Holmes:
Bias Mitigated Learning from Differentially Private Synthetic Data: A Cautionary Tale. CoRR abs/2108.10934 (2021) - [i10]Raphael Sonabend, Andreas Bender, Sebastian J. Vollmer:
Evaluation of survival distribution predictions with discrimination measures. CoRR abs/2112.04828 (2021) - 2020
- [j8]Anthony D. Blaom, Franz J. Király, Thibaut Liénart, Yiannis Simillides, Diego Arenas, Sebastian J. Vollmer:
MLJ: A Julia package for composable machine learning. J. Open Source Softw. 5(55): 2704 (2020) - [j7]Bilal A. Mateen, James Liley, Alastair K. Denniston, Chris C. Holmes, Sebastian J. Vollmer:
Improving the quality of machine learning in health applications and clinical research. Nat. Mach. Intell. 2(10): 554-556 (2020) - [j6]Michael B. Giles, Mateusz B. Majka, Lukasz Szpruch, Sebastian J. Vollmer, Konstantinos C. Zygalakis:
Multi-level Monte Carlo methods for the approximation of invariant measures of stochastic differential equations. Stat. Comput. 30(3): 507-524 (2020) - [i9]Anthony D. Blaom, Franz J. Király, Thibaut Liénart, Yiannis Simillides, Diego Arenas, Sebastian J. Vollmer:
MLJ: A Julia package for composable Machine Learning. CoRR abs/2007.12285 (2020) - [i8]James Liley, Samuel R. Emerson, Bilal A. Mateen, Catalina A. Vallejos, Louis J. M. Aslett, Sebastian J. Vollmer:
Model updating after interventions paradoxically introduces bias. CoRR abs/2010.11530 (2020) - [i7]Ashrya Agrawal, Florian Pfisterer, Bernd Bischl, Jiahao Chen, Srijan Sood, Sameena Shah, Francois Buet-Golfouse, Bilal A. Mateen, Sebastian J. Vollmer:
Debiasing classifiers: is reality at variance with expectation? CoRR abs/2011.02407 (2020) - [i6]Harrison Wilde, Jack Jewson, Sebastian J. Vollmer, Chris C. Holmes:
Foundations of Bayesian Learning from Synthetic Data. CoRR abs/2011.08299 (2020) - [i5]Anthony D. Blaom, Sebastian J. Vollmer:
Flexible model composition in machine learning and its implementation in MLJ. CoRR abs/2012.15505 (2020)
2010 – 2019
- 2019
- [i4]Diego Arenas, Jon Atkins, Clare Austin, David Beavan, Alvaro Cabrejas Egea, Stephen Carlysle-Davies, Ian Carter, Rob Clarke, James Cunningham, Tom Doel, Oliver Forrest, Evelina Gabasova, James Geddes, James Hetherington, Radka Jersakova, Franz J. Király, Catherine Lawrence, Jules Manser, Martin T. O'Reilly, James Robinson, Helen Sherwood-Taylor, Serena Tierney, Catalina A. Vallejos, Sebastian J. Vollmer, Kirstie J. Whitaker:
Design choices for productive, secure, data-intensive research at scale in the cloud. CoRR abs/1908.08737 (2019) - 2018
- [i3]Sebastian J. Vollmer, Bilal A. Mateen, Gergo Bohner, Franz J. Király, Rayid Ghani, Pall Jonsson, Sarah Cumbers, Adrian Jonas, Katherine S. L. McAllister, Puja Myles, David Granger, Mark Birse, Richard Branson, Karel G. M. Moons, Gary S. Collins, John P. A. Ioannidis, Chris C. Holmes, Harry Hemingway:
Machine learning and AI research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness. CoRR abs/1812.10404 (2018) - 2017
- [j5]Leonard Hasenclever, Stefan Webb, Thibaut Liénart, Sebastian J. Vollmer, Balaji Lakshminarayanan, Charles Blundell, Yee Whye Teh:
Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server. J. Mach. Learn. Res. 18: 106:1-106:37 (2017) - [j4]Louis J. M. Aslett, Tigran Nagapetyan, Sebastian J. Vollmer:
Multilevel Monte Carlo for Reliability Theory. Reliab. Eng. Syst. Saf. 165: 188-196 (2017) - [c1]Xiaoyu Lu, Valerio Perrone, Leonard Hasenclever, Yee Whye Teh, Sebastian J. Vollmer:
Relativistic Monte Carlo. AISTATS 2017: 1236-1245 - 2016
- [j3]Yee Whye Teh, Alexandre H. Thiéry, Sebastian J. Vollmer:
Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics. J. Mach. Learn. Res. 17: 7:1-7:33 (2016) - [j2]Sebastian J. Vollmer, Konstantinos C. Zygalakis, Yee Whye Teh:
Exploration of the (Non-)Asymptotic Bias and Variance of Stochastic Gradient Langevin Dynamics. J. Mach. Learn. Res. 17: 159:1-159:48 (2016) - [i2]Jack Gorham, Andrew B. Duncan, Sebastian J. Vollmer, Lester W. Mackey:
Measuring Sample Quality with Diffusions. CoRR abs/1611.06972 (2016) - 2015
- [j1]Sebastian J. Vollmer:
Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors. SIAM/ASA J. Uncertain. Quantification 3(1): 535-561 (2015) - [i1]Yee Whye Teh, Leonard Hasenclever, Thibaut Liénart, Sebastian J. Vollmer, Stefan Webb, Balaji Lakshminarayanan, Charles Blundell:
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server. CoRR abs/1512.09327 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:25 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint