


default search action
Sergey V. Dolgov
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Sergey Dolgov, Dmitry V. Savostyanov
:
Tensor product approach to modelling epidemics on networks. Appl. Math. Comput. 460: 128290 (2024) - [j30]Sergey Dolgov, Dmitry V. Savostyanov:
Tensor product algorithms for inference of contact network from epidemiological data. BMC Bioinform. 25(1): 285 (2024) - [j29]Tiangang Cui
, Sergey Dolgov
, Robert Scheichl
:
Deep Importance Sampling Using Tensor Trains with Application to a Priori and a Posteriori Rare Events. SIAM J. Sci. Comput. 46(1): 1- (2024) - [c2]Vadim Abronin, Aleksei Naumov, Denis Mazur, Dmitriy Bystrov, Katerina Tsarova, Artem Melnikov, Sergey Dolgov, Reuben Brasher, Michael Perelshtein:
TQCompressor: Improving Tensor Decomposition Methods in Neural Networks Via Permutations. MIPR 2024: 503-506 - [i22]Sergey Dolgov, Dmitry V. Savostyanov:
Tensor product algorithms for inference of contact network from epidemiological data. CoRR abs/2401.15031 (2024) - [i21]Vadim Abronin, Aleksei Naumov, Denis Mazur, Dmitriy Bystrov, Katerina Tsarova, Artem Melnikov, Ivan V. Oseledets, Sergey Dolgov, Reuben Brasher, Michael Perelshtein:
TQCompressor: improving tensor decomposition methods in neural networks via permutations. CoRR abs/2401.16367 (2024) - [i20]Harbir Antil, Sergey Dolgov, Akwum Onwunta:
Tensor train solution to uncertain optimization problems with shared sparsity penalty. CoRR abs/2411.03989 (2024) - 2023
- [j28]Tiangang Cui
, Sergey Dolgov, Olivier Zahm:
Scalable conditional deep inverse Rosenblatt transports using tensor trains and gradient-based dimension reduction. J. Comput. Phys. 485: 112103 (2023) - [j27]Kirandeep Kour, Sergey Dolgov, Martin Stoll, Peter Benner:
Efficient Structure-preserving Support Tensor Train Machine. J. Mach. Learn. Res. 24: 4:1-4:22 (2023) - [j26]Harbir Antil
, Sergey Dolgov, Akwum Onwunta:
TTRISK: Tensor train decomposition algorithm for risk averse optimization. Numer. Linear Algebra Appl. 30(3) (2023) - [j25]Sergey Dolgov, Dante Kalise
, Luca Saluzzi
:
Data-Driven Tensor Train Gradient Cross Approximation for Hamilton-Jacobi-Bellman Equations. SIAM J. Sci. Comput. 45(5): 2153- (2023) - [i19]Harbir Antil, Sergey Dolgov, Akwum Onwunta:
State-constrained Optimization Problems under Uncertainty: A Tensor Train Approach. CoRR abs/2301.08684 (2023) - [i18]Kirandeep Kour, Sergey Dolgov, Peter Benner
, Martin Stoll, Max Pfeffer
:
A weighted subspace exponential kernel for support tensor machines. CoRR abs/2302.08134 (2023) - [i17]Tiangang Cui
, Sergey Dolgov, Olivier Zahm:
Self-reinforced polynomial approximation methods for concentrated probability densities. CoRR abs/2303.02554 (2023) - [i16]Egor Kornev, Sergey Dolgov, Karan Pinto, Markus Pflitsch, Michael Perelshtein, Artem Melnikov:
Numerical solution of the incompressible Navier-Stokes equations for chemical mixers via quantum-inspired Tensor Train Finite Element Method. CoRR abs/2305.10784 (2023) - [i15]Sergey Dolgov, Dante Kalise
, Luca Saluzzi:
Statistical Proper Orthogonal Decomposition for model reduction in feedback control. CoRR abs/2311.16332 (2023) - 2022
- [j24]Tiangang Cui
, Sergey Dolgov
:
Deep Composition of Tensor-Trains Using Squared Inverse Rosenblatt Transports. Found. Comput. Math. 22(6): 1863-1922 (2022) - [j23]Paul B. Rohrbach
, Sergey Dolgov, Lars Grasedyck, Robert Scheichl:
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format. SIAM/ASA J. Uncertain. Quantification 10(1): 1191-1224 (2022) - [j22]Nikita Gourianov
, Michael Lubasch
, Sergey Dolgov, Quincy Y. van den Berg
, Hessam Babaee, Peyman Givi
, Martin Kiffner
, Dieter Jaksch
:
A quantum-inspired approach to exploit turbulence structures. Nat. Comput. Sci. 2(1): 30-37 (2022) - [i14]Sergey Dolgov, Dante Kalise, Luca Saluzzi:
Optimizing semilinear representations for State-dependent Riccati Equation-based feedback control. CoRR abs/2202.11801 (2022) - [i13]Sergey Dolgov, Dante Kalise
, Luca Saluzzi:
Data-driven Tensor Train Gradient Cross Approximation for Hamilton-Jacobi-Bellman Equations. CoRR abs/2205.05109 (2022) - [i12]Oliver Townsend, Silvia Gazzola
, Sergey Dolgov, Paul Quinn:
Undersampling Raster Scans in Spectromicroscopy for reduced dose and faster measurements. CoRR abs/2208.09470 (2022) - [i11]Tiangang Cui, Sergey Dolgov, Robert Scheichl:
Deep importance sampling using tensor-trains with application to a priori and a posteriori rare event estimation. CoRR abs/2209.01941 (2022) - [i10]Sergey V. Dolgov, Dmitry V. Savostyanov:
Tensor product approach to modelling epidemics on networks. CoRR abs/2209.03756 (2022) - 2021
- [j21]Sergey Dolgov, Dante Kalise
, Karl Kunisch:
Tensor Decomposition Methods for High-dimensional Hamilton-Jacobi-Bellman Equations. SIAM J. Sci. Comput. 43(3): A1625-A1650 (2021) - [j20]Sergey Dolgov, Daniel Kressner
, Christoph Strössner
:
Functional Tucker Approximation Using Chebyshev Interpolation. SIAM J. Sci. Comput. 43(3): A2190-A2210 (2021) - [i9]Tiangang Cui, Sergey Dolgov, Olivier Zahm:
Conditional Deep Inverse Rosenblatt Transports. CoRR abs/2106.04170 (2021) - [i8]Harbir Antil, Sergey Dolgov, Akwum Onwunta:
TTRISK: Tensor Train Decomposition Algorithm for Risk Averse Optimization. CoRR abs/2111.05180 (2021) - 2020
- [j19]Sergey Dolgov
, Dmitry V. Savostyanov
:
Parallel cross interpolation for high-precision calculation of high-dimensional integrals. Comput. Phys. Commun. 246 (2020) - [j18]Sergey Dolgov
, Karim Anaya-Izquierdo
, Colin Fox, Robert Scheichl
:
Approximation and sampling of multivariate probability distributions in the tensor train decomposition. Stat. Comput. 30(3): 603-625 (2020) - [j17]Alexandra Bünger, Sergey Dolgov, Martin Stoll
:
A Low-Rank Tensor Method for PDE-Constrained Optimization with Isogeometric Analysis. SIAM J. Sci. Comput. 42(1): A140-A161 (2020) - [i7]Paul B. Rohrbach
, Sergey Dolgov, Lars Grasedyck, Robert Scheichl:
Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format. CoRR abs/2001.08187 (2020) - [i6]Kirandeep Kour, Sergey Dolgov, Martin Stoll, Peter Benner:
Efficient Structure-preserving Support Tensor Train Machine. CoRR abs/2002.05079 (2020) - [i5]Tiangang Cui, Sergey Dolgov:
Deep Composition of Tensor Trains using Squared Inverse Rosenblatt Transports. CoRR abs/2007.06968 (2020) - [i4]Sergey Dolgov, Daniel Kressner, Christoph Strössner:
Functional Tucker approximation using Chebyshev interpolation. CoRR abs/2007.16126 (2020)
2010 – 2019
- 2019
- [j16]Sergey V. Dolgov
:
A Tensor Decomposition Algorithm for Large ODEs with Conservation Laws. Comput. Methods Appl. Math. 19(1): 23-38 (2019) - [j15]Sergey Dolgov
, Robert Scheichl
:
A Hybrid Alternating Least Squares-TT-Cross Algorithm for Parametric PDEs. SIAM/ASA J. Uncertain. Quantification 7(1): 260-291 (2019) - [j14]Sergey Dolgov
, John W. Pearson:
Preconditioners and Tensor Product Solvers for Optimal Control Problems from Chemotaxis. SIAM J. Sci. Comput. 41(6): B1228-B1253 (2019) - [i3]Sergey Dolgov, Dante Kalise
, Karl Kunisch:
A Tensor Decomposition Approach for High-Dimensional Hamilton-Jacobi-Bellman Equations. CoRR abs/1908.01533 (2019) - [i2]Tobias Breiten, Sergey Dolgov, Martin Stoll:
Solving differential Riccati equations: A nonlinear space-time method using tensor trains. CoRR abs/1912.06944 (2019) - 2018
- [j13]Sergey Dolgov
, Vladimir A. Kazeev
, Boris N. Khoromskij:
Direct tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients. Math. Comput. Simul. 145: 136-155 (2018) - 2017
- [j12]Peter Benner
, Sergey Dolgov
, Venera Khoromskaia, Boris N. Khoromskij:
Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation. J. Comput. Phys. 334: 221-239 (2017) - [j11]Sergey Dolgov
, Martin Stoll
:
Low-Rank Solution to an Optimization Problem Constrained by the Navier-Stokes Equations. SIAM J. Sci. Comput. 39(1) (2017) - 2016
- [j10]Sergey Dolgov
, John W. Pearson, Dmitry V. Savostyanov
, Martin Stoll
:
Fast tensor product solvers for optimization problems with fractional differential equations as constraints. Appl. Math. Comput. 273: 604-623 (2016) - [j9]Simon Etter
, Sergey Dolgov
, Boris N. Khoromskij:
Erratum: Two-Level QTT-Tucker Format for Optimized Tensor Calculus. SIAM J. Matrix Anal. Appl. 37(2): 818-822 (2016) - 2015
- [j8]Sergey Dolgov
, Boris N. Khoromskij, Alexander Litvinenko
, Hermann G. Matthies:
Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format. SIAM/ASA J. Uncertain. Quantification 3(1): 1109-1135 (2015) - [j7]Sergey Dolgov
, Boris N. Khoromskij:
Simultaneous state-time approximation of the chemical master equation using tensor product formats. Numer. Linear Algebra Appl. 22(2): 197-219 (2015) - 2014
- [j6]Sergey V. Dolgov
, Boris N. Khoromskij, Ivan V. Oseledets
, Dmitry V. Savostyanov
:
Computation of extreme eigenvalues in higher dimensions using block tensor train format. Comput. Phys. Commun. 185(4): 1207-1216 (2014) - [j5]Sergey V. Dolgov
, Alexander P. Smirnov, E. E. Tyrtyshnikov:
Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma. J. Comput. Phys. 263: 268-282 (2014) - [j4]Sergey Dolgov
, Dmitry V. Savostyanov
:
Alternating Minimal Energy Methods for Linear Systems in Higher Dimensions. SIAM J. Sci. Comput. 36(5) (2014) - 2013
- [j3]Sergey Dolgov
, Boris N. Khoromskij:
Two-Level QTT-Tucker Format for Optimized Tensor Calculus. SIAM J. Matrix Anal. Appl. 34(2): 593-623 (2013) - [c1]Sergey Dolgov, Dmitry V. Savostyanov
:
Corrected One-Site Density Matrix Renormalization Group and Alternating Minimal Energy Algorithm. ENUMATH 2013: 335-343 - [i1]Sergey V. Dolgov, Alexander P. Smirnov, E. E. Tyrtyshnikov:
Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma. CoRR abs/1308.5952 (2013) - 2012
- [j2]Ivan V. Oseledets
, Sergey V. Dolgov
:
Solution of Linear Systems and Matrix Inversion in the TT-Format. SIAM J. Sci. Comput. 34(5) (2012) - [j1]Sergey V. Dolgov
, Boris N. Khoromskij, Ivan V. Oseledets
:
Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation. SIAM J. Sci. Comput. 34(6) (2012)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-04 21:20 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint