Skip to main content
Be2+ given parenterally reduced the phosphate content of histone H2A in normal rats and of all the phosphorylated histones at the start of S-phase in partially-hepatectomized animals. The cytosolic but not the nuclear protein kinase(s)... more
Be2+ given parenterally reduced the phosphate content of histone H2A in normal rats and of all the phosphorylated histones at the start of S-phase in partially-hepatectomized animals. The cytosolic but not the nuclear protein kinase(s) was inhibited in both intact and operated animals. In vitro the cytoplasmic enyme(s) and kinase(s) in an isosmolar NaCl extract from nuclei were both inhibited.
Epidermal Growth Factor (EGF) and prostaglandins (PGs) E2 and F2a, have been shown to stimulate primary hepatocyte proliferation. Verapamil (5-20 microM), a calcium channel inhibitor, inhibited hepatocyte DNA synthesis and c-myc... more
Epidermal Growth Factor (EGF) and prostaglandins (PGs) E2 and F2a, have been shown to stimulate primary hepatocyte proliferation. Verapamil (5-20 microM), a calcium channel inhibitor, inhibited hepatocyte DNA synthesis and c-myc expression, induced by EGF (50 ng/dish) and prostaglandins (1-12 micrograms/dish). Indomethacin (20-100 microM) decreased significantly the EGF-induced hepatocyte DNA synthesis and c-myc expression. Addition of PGs (1-9 micrograms) in hepatocyte cultures treated with EGF+indomethacin (100 microM) restored the capacity of EGF to increase c-myc expression and DNA synthesis. We propose that arachidonic acid derivatives and calcium channel blockers modulate c-myc expression in primary hepatocytes.
Epidermal Growth Factor (EGF) and prostaglandins (PGs) E2 and F2a, have been shown to stimulate primary hepatocyte proliferation. Verapamil (5-20 microM), a calcium channel inhibitor, inhibited hepatocyte DNA synthesis and c-myc... more
Epidermal Growth Factor (EGF) and prostaglandins (PGs) E2 and F2a, have been shown to stimulate primary hepatocyte proliferation. Verapamil (5-20 microM), a calcium channel inhibitor, inhibited hepatocyte DNA synthesis and c-myc expression, induced by EGF (50 ng/dish) and prostaglandins (1-12 micrograms/dish). Indomethacin (20-100 microM) decreased significantly the EGF-induced hepatocyte DNA synthesis and c-myc expression. Addition of PGs (1-9 micrograms) in hepatocyte cultures treated with EGF+indomethacin (100 microM) restored the capacity of EGF to increase c-myc expression and DNA synthesis. We propose that arachidonic acid derivatives and calcium channel blockers modulate c-myc expression in primary hepatocytes.
Research Interests:
Cationic liposome-DNA complexes are being evaluated as potential gene therapy agents for the lung. Cations have strong effects on the biophysical functions of lung surfactant. Therefore, we assessed whether cationic liposomes [composed of... more
Cationic liposome-DNA complexes are being evaluated as potential gene therapy agents for the lung. Cations have strong effects on the biophysical functions of lung surfactant. Therefore, we assessed whether cationic liposomes [composed of N-(1-(2,3-dioleyloxy) propyl)-N,N,N-trimethyl-ammonium chloride and dioleylphosphatidylethanolamine] with or without DNA affect behavior of four types of surfactant in vitro. Experiments were carried out using a modified Wilhelmy surface balance. The ability of surfactants that contain protein and anionic lipids to lower surface tension was inhibited in the presence of cationic liposomes. Inactivation was less when DNA was preincubated with cationic liposomes. Surfactant that contained neither protein nor anionic lipids was not inactivated. Mechanical properties of the lung were studied to assess in vivo surfactant function after intratracheal instillation of a cationic liposome-DNA complex into adult rats. Pressure-volume deflation curves were shifted by 18% compared with those from normal (untreated) animals, but this effect was transient and not different from that observed in animals who received a similar volume of saline. These findings indicate that cationic liposomes alone may have deleterious effects on behavior of some surfactants possibly by disrupting charge interactions between negatively charged phospholipids and surfactant proteins. When DNA is added to liposomes before exposure to surfactants, the adverse charge interactions may be obviated by charge neutralization of liposomes by DNA.

And 9 more