| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2008 Roland Lichters |
| 5 | |
| 6 | This file is part of QuantLib, a free-software/open-source library |
| 7 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 8 | |
| 9 | QuantLib is free software: you can redistribute it and/or modify it |
| 10 | under the terms of the QuantLib license. You should have received a |
| 11 | copy of the license along with this program; if not, please email |
| 12 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 13 | <http://quantlib.org/license.shtml>. |
| 14 | |
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 17 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 18 | */ |
| 19 | |
| 20 | #include "cdo.hpp" |
| 21 | #include "utilities.hpp" |
| 22 | #include <ql/experimental/credit/cdo.hpp> |
| 23 | #include <ql/experimental/credit/pool.hpp> |
| 24 | #include <ql/experimental/credit/integralcdoengine.hpp> |
| 25 | #include <ql/experimental/credit/midpointcdoengine.hpp> |
| 26 | #include <ql/experimental/credit/randomdefaultlatentmodel.hpp> |
| 27 | #include <ql/experimental/credit/inhomogeneouspooldef.hpp> |
| 28 | #include <ql/experimental/credit/homogeneouspooldef.hpp> |
| 29 | #include <ql/experimental/credit/gaussianlhplossmodel.hpp> |
| 30 | #include <ql/termstructures/yield/flatforward.hpp> |
| 31 | #include <ql/termstructures/credit/flathazardrate.hpp> |
| 32 | #include <ql/time/calendars/target.hpp> |
| 33 | #include <ql/time/daycounters/actual360.hpp> |
| 34 | #include <ql/time/daycounters/actualactual.hpp> |
| 35 | #include <ql/quotes/simplequote.hpp> |
| 36 | #include <ql/currencies/europe.hpp> |
| 37 | #include <iomanip> |
| 38 | #include <iostream> |
| 39 | |
| 40 | using namespace QuantLib; |
| 41 | using namespace boost::unit_test_framework; |
| 42 | |
| 43 | #ifndef QL_PATCH_SOLARIS |
| 44 | |
| 45 | namespace cdo_test { |
| 46 | |
| 47 | Real hwAttachment[] = { 0.00, 0.03, 0.06, 0.10 }; |
| 48 | Real hwDetachment[] = { 0.03, 0.06, 0.10, 1.00 }; |
| 49 | |
| 50 | struct hwDatum { |
| 51 | Real correlation; |
| 52 | Integer nm; |
| 53 | Integer nz; |
| 54 | Real trancheSpread[4]; |
| 55 | }; |
| 56 | |
| 57 | // HW Table 7 |
| 58 | // corr, Nm, Nz, 0-3, 3-6, 6-10, 10-100 |
| 59 | hwDatum hwData7[] = { |
| 60 | { .correlation: 0.1, .nm: -1, .nz: -1, .trancheSpread: { 2279, 450, 89, 1 } }, |
| 61 | { .correlation: 0.3, .nm: -1, .nz: -1, .trancheSpread: { 1487, 472, 203, 7 } }, |
| 62 | // Opening the T, T&G tests too. The convolution is analytical |
| 63 | // now so it runs it a time comparable to the gaussian tests and |
| 64 | // has enough precission to pass the tests. |
| 65 | // Below the T models are integrated with a quadrature, even if this |
| 66 | // is incorrect the test pass good enough, the quadrature gets to |
| 67 | // be worst as the kernel deviates from a normal, this is low |
| 68 | // orders of the T; here 5 is enough, 3 would not be. |
| 69 | { .correlation: 0.3, .nm: -1, .nz: 5, .trancheSpread: { 1766, 420, 161, 6 } }, |
| 70 | { .correlation: 0.3, .nm: 5, .nz: -1, .trancheSpread: { 1444, 408, 171, 10 } }, |
| 71 | { .correlation: 0.3, .nm: 5, .nz: 5, .trancheSpread: { 1713, 359, 136, 9 } } |
| 72 | }; |
| 73 | |
| 74 | void check(int i, int j, const std::string& desc, Real found, Real expected, |
| 75 | Real bpTolerance, Real relativeTolerance) |
| 76 | { |
| 77 | /* Uncomment to display the full show if your debugging: |
| 78 | std::cout<< "Case: "<< i << " " << j << " " << found << " :: " |
| 79 | << expected << " ("<< desc << ") " << std::endl; |
| 80 | */ |
| 81 | Real absDiff = found - expected; |
| 82 | Real relDiff = absDiff / expected; |
| 83 | BOOST_CHECK_MESSAGE (fabs(relDiff) < relativeTolerance || |
| 84 | fabs(absDiff) < bpTolerance, |
| 85 | "case " << i << " " << j << " (" << desc << "): " |
| 86 | << found << " vs. " << expected); |
| 87 | } |
| 88 | |
| 89 | } |
| 90 | |
| 91 | #endif |
| 92 | |
| 93 | |
| 94 | void CdoTest::testHW(unsigned dataSet) { |
| 95 | #ifndef QL_PATCH_SOLARIS |
| 96 | |
| 97 | BOOST_TEST_MESSAGE ("Testing CDO premiums against Hull-White values" |
| 98 | " for data set " << dataSet << "..." ); |
| 99 | |
| 100 | using namespace cdo_test; |
| 101 | |
| 102 | Size poolSize = 100; |
| 103 | Real lambda = 0.01; |
| 104 | |
| 105 | // nBuckets and period determine the computation time |
| 106 | Size nBuckets = 200; |
| 107 | // Period period = 1*Months; |
| 108 | // for MC engines |
| 109 | Size numSims = 5000; |
| 110 | |
| 111 | Real rate = 0.05; |
| 112 | DayCounter daycount = Actual360(); |
| 113 | Compounding cmp = Continuous; // Simple; |
| 114 | |
| 115 | Real recovery = 0.4; |
| 116 | std::vector<Real> nominals(poolSize, 100.0); |
| 117 | Real premium = 0.02; |
| 118 | Period maxTerm (5, Years); |
| 119 | Schedule schedule = MakeSchedule().from(effectiveDate: Date (1, September, 2006)) |
| 120 | .to(terminationDate: Date (1, September, 2011)) |
| 121 | .withTenor(Period (3, Months)) |
| 122 | .withCalendar(TARGET()); |
| 123 | |
| 124 | Date asofDate = Date(31, August, 2006); |
| 125 | |
| 126 | Settings::instance().evaluationDate() = asofDate; |
| 127 | |
| 128 | ext::shared_ptr<YieldTermStructure> yieldPtr( |
| 129 | new FlatForward (asofDate, rate, |
| 130 | daycount, cmp)); |
| 131 | Handle<YieldTermStructure> yieldHandle (yieldPtr); |
| 132 | |
| 133 | Handle<Quote> hazardRate(ext::shared_ptr<Quote>(new SimpleQuote(lambda))); |
| 134 | std::vector<Handle<DefaultProbabilityTermStructure> > basket; |
| 135 | ext::shared_ptr<DefaultProbabilityTermStructure> ptr ( |
| 136 | new FlatHazardRate (asofDate, |
| 137 | hazardRate, |
| 138 | ActualActual(ActualActual::ISDA))); |
| 139 | ext::shared_ptr<Pool> pool (new Pool()); |
| 140 | std::vector<std::string> names; |
| 141 | // probability key items |
| 142 | std::vector<Issuer> issuers; |
| 143 | std::vector<std::pair<DefaultProbKey, |
| 144 | Handle<DefaultProbabilityTermStructure> > > probabilities; |
| 145 | probabilities.emplace_back( |
| 146 | args: NorthAmericaCorpDefaultKey(EURCurrency(), SeniorSec, Period(0, Weeks), 10.), |
| 147 | args: Handle<DefaultProbabilityTermStructure>(ptr)); |
| 148 | |
| 149 | for (Size i=0; i<poolSize; ++i) { |
| 150 | std::ostringstream o; |
| 151 | o << "issuer-" << i; |
| 152 | names.push_back(x: o.str()); |
| 153 | basket.emplace_back(args&: ptr); |
| 154 | issuers.emplace_back(args&: probabilities); |
| 155 | pool->add(name: names.back(), issuer: issuers.back(), contractTrigger: NorthAmericaCorpDefaultKey( |
| 156 | EURCurrency(), QuantLib::SeniorSec, Period(), 1.)); |
| 157 | } |
| 158 | |
| 159 | ext::shared_ptr<SimpleQuote> correlation (new SimpleQuote(0.0)); |
| 160 | Handle<Quote> hCorrelation (correlation); |
| 161 | QL_REQUIRE (LENGTH(hwAttachment) == LENGTH(hwDetachment), |
| 162 | "data length does not match" ); |
| 163 | |
| 164 | ext::shared_ptr<PricingEngine> midPCDOEngine( new MidPointCDOEngine( |
| 165 | yieldHandle)); |
| 166 | ext::shared_ptr<PricingEngine> integralCDOEngine( new IntegralCDOEngine( |
| 167 | yieldHandle)); |
| 168 | |
| 169 | const Size i = dataSet; |
| 170 | correlation->setValue (hwData7[i].correlation); |
| 171 | QL_REQUIRE (LENGTH(hwAttachment) == LENGTH(hwData7[i].trancheSpread), |
| 172 | "data length does not match" ); |
| 173 | std::vector<ext::shared_ptr<DefaultLossModel> > basketModels; |
| 174 | std::vector<std::string> modelNames; |
| 175 | std::vector<Real> relativeToleranceMidp, relativeTolerancePeriod, |
| 176 | absoluteTolerance; |
| 177 | |
| 178 | if (hwData7[i].nm == -1 && hwData7[i].nz == -1){ |
| 179 | ext::shared_ptr<GaussianConstantLossLM> gaussKtLossLM(new |
| 180 | GaussianConstantLossLM(hCorrelation, |
| 181 | std::vector<Real>(poolSize, recovery), |
| 182 | LatentModelIntegrationType::GaussianQuadrature, poolSize, |
| 183 | GaussianCopulaPolicy::initTraits())); |
| 184 | |
| 185 | // 1.-Inhomogeneous gaussian |
| 186 | modelNames.emplace_back(args: "Inhomogeneous gaussian" ); |
| 187 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 188 | IHGaussPoolLossModel(gaussKtLossLM, nBuckets, 5., -5, 15))); |
| 189 | absoluteTolerance.push_back(x: 1.); |
| 190 | relativeToleranceMidp.push_back(x: 0.04); |
| 191 | relativeTolerancePeriod.push_back(x: 0.04); |
| 192 | // 2.-homogeneous gaussian |
| 193 | modelNames.emplace_back(args: "Homogeneous gaussian" ); |
| 194 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 195 | HomogGaussPoolLossModel(gaussKtLossLM, nBuckets, 5., -5, 15))); |
| 196 | absoluteTolerance.push_back(x: 1.); |
| 197 | relativeToleranceMidp.push_back(x: 0.04); |
| 198 | relativeTolerancePeriod.push_back(x: 0.04); |
| 199 | // 3.-random default gaussian |
| 200 | modelNames.emplace_back(args: "Random default gaussian" ); |
| 201 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>(new |
| 202 | RandomDefaultLM<GaussianCopulaPolicy>(gaussKtLossLM, numSims))); |
| 203 | absoluteTolerance.push_back(x: 1.); |
| 204 | relativeToleranceMidp.push_back(x: 0.07); |
| 205 | relativeTolerancePeriod.push_back(x: 0.07); |
| 206 | // SECOND MC |
| 207 | // gaussian LHP |
| 208 | modelNames.emplace_back(args: "Gaussian LHP" ); |
| 209 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>(new |
| 210 | GaussianLHPLossModel(hCorrelation, |
| 211 | std::vector<Real>(poolSize, recovery)))); |
| 212 | absoluteTolerance.push_back(x: 10.); |
| 213 | relativeToleranceMidp.push_back(x: 0.5); |
| 214 | relativeTolerancePeriod.push_back(x: 0.5); |
| 215 | // Binomial... |
| 216 | // Saddle point... |
| 217 | // Recursive ... |
| 218 | } |
| 219 | else if (hwData7[i].nm > 0 && hwData7[i].nz > 0) { |
| 220 | TCopulaPolicy::initTraits initTG; |
| 221 | initTG.tOrders.push_back(x: hwData7[i].nm); |
| 222 | initTG.tOrders.push_back(x: hwData7[i].nz); |
| 223 | ext::shared_ptr<TConstantLossLM> TKtLossLM(new TConstantLossLM( |
| 224 | hCorrelation, std::vector<Real>(poolSize, recovery), |
| 225 | LatentModelIntegrationType::GaussianQuadrature, |
| 226 | poolSize, |
| 227 | initTG)); |
| 228 | // 1.-inhomogeneous studentT |
| 229 | modelNames.emplace_back(args: "Inhomogeneous student" ); |
| 230 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 231 | IHStudentPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15))); |
| 232 | absoluteTolerance.push_back(x: 1.); |
| 233 | relativeToleranceMidp.push_back(x: 0.04); |
| 234 | relativeTolerancePeriod.push_back(x: 0.04); |
| 235 | // 2.-homogeneous student T |
| 236 | modelNames.emplace_back(args: "Homogeneous student" ); |
| 237 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 238 | HomogTPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15))); |
| 239 | absoluteTolerance.push_back(x: 1.); |
| 240 | relativeToleranceMidp.push_back(x: 0.04); |
| 241 | relativeTolerancePeriod.push_back(x: 0.04); |
| 242 | // 3.-random default student T |
| 243 | modelNames.emplace_back(args: "Random default studentT" ); |
| 244 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>(new |
| 245 | RandomDefaultLM<TCopulaPolicy>(TKtLossLM, numSims))); |
| 246 | absoluteTolerance.push_back(x: 1.); |
| 247 | relativeToleranceMidp.push_back(x: 0.07); |
| 248 | relativeTolerancePeriod.push_back(x: 0.07); |
| 249 | // SECOND MC |
| 250 | // Binomial... |
| 251 | // Saddle point... |
| 252 | // Recursive ... |
| 253 | } |
| 254 | else if (hwData7[i].nm > 0 && hwData7[i].nz == -1) { |
| 255 | TCopulaPolicy::initTraits initTG; |
| 256 | initTG.tOrders.push_back(x: hwData7[i].nm); |
| 257 | initTG.tOrders.push_back(x: 45); |
| 258 | /* T_{55} is pretty close to a gaussian. Probably theres no need to |
| 259 | be this conservative as the polynomial convolution gets shorter and |
| 260 | faster as the order decreases. |
| 261 | */ |
| 262 | ext::shared_ptr<TConstantLossLM> TKtLossLM(new TConstantLossLM( |
| 263 | hCorrelation, |
| 264 | std::vector<Real>(poolSize, recovery), |
| 265 | LatentModelIntegrationType::GaussianQuadrature, |
| 266 | poolSize, |
| 267 | initTG)); |
| 268 | // 1.-inhomogeneous |
| 269 | modelNames.emplace_back(args: "Inhomogeneous student-gaussian" ); |
| 270 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 271 | IHStudentPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15))); |
| 272 | absoluteTolerance.push_back(x: 1.); |
| 273 | relativeToleranceMidp.push_back(x: 0.04); |
| 274 | relativeTolerancePeriod.push_back(x: 0.04); |
| 275 | // 2.-homogeneous |
| 276 | modelNames.emplace_back(args: "Homogeneous student-gaussian" ); |
| 277 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 278 | HomogTPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15))); |
| 279 | absoluteTolerance.push_back(x: 1.); |
| 280 | relativeToleranceMidp.push_back(x: 0.04); |
| 281 | relativeTolerancePeriod.push_back(x: 0.04); |
| 282 | // 3.-random default |
| 283 | modelNames.emplace_back(args: "Random default student-gaussian" ); |
| 284 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>(new |
| 285 | RandomDefaultLM<TCopulaPolicy>(TKtLossLM, numSims))); |
| 286 | absoluteTolerance.push_back(x: 1.); |
| 287 | relativeToleranceMidp.push_back(x: 0.07); |
| 288 | relativeTolerancePeriod.push_back(x: 0.07); |
| 289 | // SECOND MC |
| 290 | // Binomial... |
| 291 | // Saddle point... |
| 292 | // Recursive ... |
| 293 | } |
| 294 | else if (hwData7[i].nm == -1 && hwData7[i].nz > 0) { |
| 295 | TCopulaPolicy::initTraits initTG; |
| 296 | initTG.tOrders.push_back(x: 45);// pretty close to gaussian |
| 297 | initTG.tOrders.push_back(x: hwData7[i].nz); |
| 298 | ext::shared_ptr<TConstantLossLM> TKtLossLM(new TConstantLossLM( |
| 299 | hCorrelation, |
| 300 | std::vector<Real>(poolSize, recovery), |
| 301 | LatentModelIntegrationType::GaussianQuadrature, |
| 302 | poolSize, |
| 303 | initTG)); |
| 304 | // 1.-inhomogeneous gaussian |
| 305 | modelNames.emplace_back(args: "Inhomogeneous gaussian-student" ); |
| 306 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 307 | IHStudentPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15))); |
| 308 | absoluteTolerance.push_back(x: 1.); |
| 309 | relativeToleranceMidp.push_back(x: 0.04); |
| 310 | relativeTolerancePeriod.push_back(x: 0.04); |
| 311 | // 2.-homogeneous gaussian |
| 312 | modelNames.emplace_back(args: "Homogeneous gaussian-student" ); |
| 313 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>( new |
| 314 | HomogTPoolLossModel(TKtLossLM, nBuckets, 5., -5., 15))); |
| 315 | absoluteTolerance.push_back(x: 1.); |
| 316 | relativeToleranceMidp.push_back(x: 0.04); |
| 317 | relativeTolerancePeriod.push_back(x: 0.04); |
| 318 | // 3.-random default gaussian |
| 319 | modelNames.emplace_back(args: "Random default gaussian-student" ); |
| 320 | basketModels.push_back(x: ext::shared_ptr<DefaultLossModel>(new |
| 321 | RandomDefaultLM<TCopulaPolicy>(TKtLossLM, numSims))); |
| 322 | absoluteTolerance.push_back(x: 1.); |
| 323 | relativeToleranceMidp.push_back(x: 0.07); |
| 324 | relativeTolerancePeriod.push_back(x: 0.07); |
| 325 | // SECOND MC |
| 326 | // Binomial... |
| 327 | // Saddle point... |
| 328 | // Recursive ... |
| 329 | } |
| 330 | else { |
| 331 | return; |
| 332 | } |
| 333 | |
| 334 | for (Size j = 0; j < LENGTH(hwAttachment); j ++) { |
| 335 | ext::shared_ptr<Basket> basketPtr ( |
| 336 | new Basket(asofDate, names, nominals, pool, |
| 337 | hwAttachment[j], hwDetachment[j])); |
| 338 | std::ostringstream trancheId; |
| 339 | trancheId << "[" << hwAttachment[j] << " , " << hwDetachment[j] |
| 340 | << "]" ; |
| 341 | SyntheticCDO cdoe(basketPtr, Protection::Seller, |
| 342 | schedule, 0.0, premium, daycount, Following); |
| 343 | |
| 344 | for(Size im=0; im<basketModels.size(); im++) { |
| 345 | |
| 346 | basketPtr->setLossModel(basketModels[im]); |
| 347 | |
| 348 | cdoe.setPricingEngine(midPCDOEngine); |
| 349 | check(i, j, desc: modelNames[im] |
| 350 | +std::string(" with midp integration on " )+trancheId.str(), |
| 351 | found: cdoe.fairPremium() * 1e4, expected: hwData7[i].trancheSpread[j], |
| 352 | bpTolerance: absoluteTolerance[im], relativeTolerance: relativeToleranceMidp[im]); |
| 353 | |
| 354 | cdoe.setPricingEngine(integralCDOEngine); |
| 355 | check(i, j, desc: modelNames[im] |
| 356 | +std::string(" with step integration on " )+trancheId.str(), |
| 357 | found: cdoe.fairPremium() * 1e4, expected: hwData7[i].trancheSpread[j], |
| 358 | bpTolerance: absoluteTolerance[im], relativeTolerance: relativeTolerancePeriod[im]); |
| 359 | } |
| 360 | } |
| 361 | #endif |
| 362 | } |
| 363 | |
| 364 | |
| 365 | test_suite* CdoTest::suite(SpeedLevel speed) { |
| 366 | auto* suite = BOOST_TEST_SUITE("CDO tests" ); |
| 367 | |
| 368 | #ifndef QL_PATCH_SOLARIS |
| 369 | if (speed == Slow) { |
| 370 | // unrolled to get different test names |
| 371 | suite->add(QUANTLIB_TEST_CASE([=](){ CdoTest::testHW(0); })); |
| 372 | suite->add(QUANTLIB_TEST_CASE([=](){ CdoTest::testHW(1); })); |
| 373 | suite->add(QUANTLIB_TEST_CASE([=](){ CdoTest::testHW(2); })); |
| 374 | suite->add(QUANTLIB_TEST_CASE([=](){ CdoTest::testHW(3); })); |
| 375 | suite->add(QUANTLIB_TEST_CASE([=](){ CdoTest::testHW(4); })); |
| 376 | } |
| 377 | #endif |
| 378 | return suite; |
| 379 | } |
| 380 | |