| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2003 Ferdinando Ametrano |
| 5 | Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb |
| 6 | Copyright (C) 2004, 2005 StatPro Italia srl |
| 7 | |
| 8 | This file is part of QuantLib, a free-software/open-source library |
| 9 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 10 | |
| 11 | QuantLib is free software: you can redistribute it and/or modify it |
| 12 | under the terms of the QuantLib license. You should have received a |
| 13 | copy of the license along with this program; if not, please email |
| 14 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 15 | <http://quantlib.org/license.shtml>. |
| 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 19 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 20 | */ |
| 21 | |
| 22 | /*! \file stochasticprocess.hpp |
| 23 | \brief stochastic processes |
| 24 | */ |
| 25 | |
| 26 | #ifndef quantlib_stochastic_process_hpp |
| 27 | #define quantlib_stochastic_process_hpp |
| 28 | |
| 29 | #include <ql/time/date.hpp> |
| 30 | #include <ql/patterns/observable.hpp> |
| 31 | #include <ql/math/matrix.hpp> |
| 32 | |
| 33 | namespace QuantLib { |
| 34 | |
| 35 | //! multi-dimensional stochastic process class. |
| 36 | /*! This class describes a stochastic process governed by |
| 37 | \f[ |
| 38 | d\mathrm{x}_t = \mu(t, x_t)\mathrm{d}t |
| 39 | + \sigma(t, \mathrm{x}_t) \cdot d\mathrm{W}_t. |
| 40 | \f] |
| 41 | */ |
| 42 | class StochasticProcess : public Observer, public Observable { |
| 43 | public: |
| 44 | //! discretization of a stochastic process over a given time interval |
| 45 | class discretization { |
| 46 | public: |
| 47 | virtual ~discretization() = default; |
| 48 | virtual Array drift(const StochasticProcess&, |
| 49 | Time t0, |
| 50 | const Array& x0, |
| 51 | Time dt) const = 0; |
| 52 | virtual Matrix diffusion(const StochasticProcess&, |
| 53 | Time t0, |
| 54 | const Array& x0, |
| 55 | Time dt) const = 0; |
| 56 | virtual Matrix covariance(const StochasticProcess&, |
| 57 | Time t0, |
| 58 | const Array& x0, |
| 59 | Time dt) const = 0; |
| 60 | }; |
| 61 | ~StochasticProcess() override = default; |
| 62 | //! \name Stochastic process interface |
| 63 | //@{ |
| 64 | //! returns the number of dimensions of the stochastic process |
| 65 | virtual Size size() const = 0; |
| 66 | //! returns the number of independent factors of the process |
| 67 | virtual Size factors() const; |
| 68 | //! returns the initial values of the state variables |
| 69 | virtual Array initialValues() const = 0; |
| 70 | /*! \brief returns the drift part of the equation, i.e., |
| 71 | \f$ \mu(t, \mathrm{x}_t) \f$ |
| 72 | */ |
| 73 | virtual Array drift(Time t, |
| 74 | const Array& x) const = 0; |
| 75 | /*! \brief returns the diffusion part of the equation, i.e. |
| 76 | \f$ \sigma(t, \mathrm{x}_t) \f$ |
| 77 | */ |
| 78 | virtual Matrix diffusion(Time t, |
| 79 | const Array& x) const = 0; |
| 80 | /*! returns the expectation |
| 81 | \f$ E(\mathrm{x}_{t_0 + \Delta t} |
| 82 | | \mathrm{x}_{t_0} = \mathrm{x}_0) \f$ |
| 83 | of the process after a time interval \f$ \Delta t \f$ |
| 84 | according to the given discretization. This method can be |
| 85 | overridden in derived classes which want to hard-code a |
| 86 | particular discretization. |
| 87 | */ |
| 88 | virtual Array expectation(Time t0, |
| 89 | const Array& x0, |
| 90 | Time dt) const; |
| 91 | /*! returns the standard deviation |
| 92 | \f$ S(\mathrm{x}_{t_0 + \Delta t} |
| 93 | | \mathrm{x}_{t_0} = \mathrm{x}_0) \f$ |
| 94 | of the process after a time interval \f$ \Delta t \f$ |
| 95 | according to the given discretization. This method can be |
| 96 | overridden in derived classes which want to hard-code a |
| 97 | particular discretization. |
| 98 | */ |
| 99 | virtual Matrix stdDeviation(Time t0, |
| 100 | const Array& x0, |
| 101 | Time dt) const; |
| 102 | /*! returns the covariance |
| 103 | \f$ V(\mathrm{x}_{t_0 + \Delta t} |
| 104 | | \mathrm{x}_{t_0} = \mathrm{x}_0) \f$ |
| 105 | of the process after a time interval \f$ \Delta t \f$ |
| 106 | according to the given discretization. This method can be |
| 107 | overridden in derived classes which want to hard-code a |
| 108 | particular discretization. |
| 109 | */ |
| 110 | virtual Matrix covariance(Time t0, |
| 111 | const Array& x0, |
| 112 | Time dt) const; |
| 113 | /*! returns the asset value after a time interval \f$ \Delta t |
| 114 | \f$ according to the given discretization. By default, it |
| 115 | returns |
| 116 | \f[ |
| 117 | E(\mathrm{x}_0,t_0,\Delta t) + |
| 118 | S(\mathrm{x}_0,t_0,\Delta t) \cdot \Delta \mathrm{w} |
| 119 | \f] |
| 120 | where \f$ E \f$ is the expectation and \f$ S \f$ the |
| 121 | standard deviation. |
| 122 | */ |
| 123 | virtual Array evolve(Time t0, |
| 124 | const Array& x0, |
| 125 | Time dt, |
| 126 | const Array& dw) const; |
| 127 | /*! applies a change to the asset value. By default, it |
| 128 | returns \f$ \mathrm{x} + \Delta \mathrm{x} \f$. |
| 129 | */ |
| 130 | virtual Array apply(const Array& x0, |
| 131 | const Array& dx) const; |
| 132 | //@} |
| 133 | |
| 134 | //! \name utilities |
| 135 | //@{ |
| 136 | /*! returns the time value corresponding to the given date |
| 137 | in the reference system of the stochastic process. |
| 138 | |
| 139 | \note As a number of processes might not need this |
| 140 | functionality, a default implementation is given |
| 141 | which raises an exception. |
| 142 | */ |
| 143 | virtual Time time(const Date&) const; |
| 144 | //@} |
| 145 | |
| 146 | //! \name Observer interface |
| 147 | //@{ |
| 148 | void update() override; |
| 149 | //@} |
| 150 | protected: |
| 151 | StochasticProcess() = default; |
| 152 | explicit StochasticProcess(ext::shared_ptr<discretization>); |
| 153 | ext::shared_ptr<discretization> discretization_; |
| 154 | }; |
| 155 | |
| 156 | |
| 157 | //! 1-dimensional stochastic process |
| 158 | /*! This class describes a stochastic process governed by |
| 159 | \f[ |
| 160 | dx_t = \mu(t, x_t)dt + \sigma(t, x_t)dW_t. |
| 161 | \f] |
| 162 | */ |
| 163 | class StochasticProcess1D : public StochasticProcess { |
| 164 | public: |
| 165 | //! discretization of a 1-D stochastic process |
| 166 | class discretization { |
| 167 | public: |
| 168 | virtual ~discretization() = default; |
| 169 | virtual Real drift(const StochasticProcess1D&, |
| 170 | Time t0, Real x0, Time dt) const = 0; |
| 171 | virtual Real diffusion(const StochasticProcess1D&, |
| 172 | Time t0, Real x0, Time dt) const = 0; |
| 173 | virtual Real variance(const StochasticProcess1D&, |
| 174 | Time t0, Real x0, Time dt) const = 0; |
| 175 | }; |
| 176 | //! \name 1-D stochastic process interface |
| 177 | //@{ |
| 178 | //! returns the initial value of the state variable |
| 179 | virtual Real x0() const = 0; |
| 180 | //! returns the drift part of the equation, i.e. \f$ \mu(t, x_t) \f$ |
| 181 | virtual Real drift(Time t, Real x) const = 0; |
| 182 | /*! \brief returns the diffusion part of the equation, i.e. |
| 183 | \f$ \sigma(t, x_t) \f$ |
| 184 | */ |
| 185 | virtual Real diffusion(Time t, Real x) const = 0; |
| 186 | /*! returns the expectation |
| 187 | \f$ E(x_{t_0 + \Delta t} | x_{t_0} = x_0) \f$ |
| 188 | of the process after a time interval \f$ \Delta t \f$ |
| 189 | according to the given discretization. This method can be |
| 190 | overridden in derived classes which want to hard-code a |
| 191 | particular discretization. |
| 192 | */ |
| 193 | virtual Real expectation(Time t0, Real x0, Time dt) const; |
| 194 | /*! returns the standard deviation |
| 195 | \f$ S(x_{t_0 + \Delta t} | x_{t_0} = x_0) \f$ |
| 196 | of the process after a time interval \f$ \Delta t \f$ |
| 197 | according to the given discretization. This method can be |
| 198 | overridden in derived classes which want to hard-code a |
| 199 | particular discretization. |
| 200 | */ |
| 201 | virtual Real stdDeviation(Time t0, Real x0, Time dt) const; |
| 202 | /*! returns the variance |
| 203 | \f$ V(x_{t_0 + \Delta t} | x_{t_0} = x_0) \f$ |
| 204 | of the process after a time interval \f$ \Delta t \f$ |
| 205 | according to the given discretization. This method can be |
| 206 | overridden in derived classes which want to hard-code a |
| 207 | particular discretization. |
| 208 | */ |
| 209 | virtual Real variance(Time t0, Real x0, Time dt) const; |
| 210 | /*! returns the asset value after a time interval \f$ \Delta t |
| 211 | \f$ according to the given discretization. By default, it |
| 212 | returns |
| 213 | \f[ |
| 214 | E(x_0,t_0,\Delta t) + S(x_0,t_0,\Delta t) \cdot \Delta w |
| 215 | \f] |
| 216 | where \f$ E \f$ is the expectation and \f$ S \f$ the |
| 217 | standard deviation. |
| 218 | */ |
| 219 | virtual Real evolve(Time t0, Real x0, Time dt, Real dw) const; |
| 220 | /*! applies a change to the asset value. By default, it |
| 221 | returns \f$ x + \Delta x \f$. |
| 222 | */ |
| 223 | virtual Real apply(Real x0, Real dx) const; |
| 224 | //@} |
| 225 | protected: |
| 226 | StochasticProcess1D() = default; |
| 227 | explicit StochasticProcess1D(ext::shared_ptr<discretization>); |
| 228 | ext::shared_ptr<discretization> discretization_; |
| 229 | private: |
| 230 | // StochasticProcess interface implementation |
| 231 | Size size() const override; |
| 232 | Array initialValues() const override; |
| 233 | Array drift(Time t, const Array& x) const override; |
| 234 | Matrix diffusion(Time t, const Array& x) const override; |
| 235 | Array expectation(Time t0, const Array& x0, Time dt) const override; |
| 236 | Matrix stdDeviation(Time t0, const Array& x0, Time dt) const override; |
| 237 | Matrix covariance(Time t0, const Array& x0, Time dt) const override; |
| 238 | Array evolve(Time t0, const Array& x0, Time dt, const Array& dw) const override; |
| 239 | Array apply(const Array& x0, const Array& dx) const override; |
| 240 | }; |
| 241 | |
| 242 | |
| 243 | // inline definitions |
| 244 | |
| 245 | inline Size StochasticProcess1D::size() const { |
| 246 | return 1; |
| 247 | } |
| 248 | |
| 249 | inline Array StochasticProcess1D::initialValues() const { |
| 250 | Array a(1, x0()); |
| 251 | return a; |
| 252 | } |
| 253 | |
| 254 | inline Array StochasticProcess1D::drift(Time t, const Array& x) const { |
| 255 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 256 | QL_REQUIRE(x.size() == 1, "1-D array required" ); |
| 257 | #endif |
| 258 | Array a(1, drift(t, x: x[0])); |
| 259 | return a; |
| 260 | } |
| 261 | |
| 262 | inline Matrix StochasticProcess1D::diffusion(Time t, const Array& x) const { |
| 263 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 264 | QL_REQUIRE(x.size() == 1, "1-D array required" ); |
| 265 | #endif |
| 266 | Matrix m(1, 1, diffusion(t, x: x[0])); |
| 267 | return m; |
| 268 | } |
| 269 | |
| 270 | inline Array StochasticProcess1D::expectation( |
| 271 | Time t0, const Array& x0, Time dt) const { |
| 272 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 273 | QL_REQUIRE(x0.size() == 1, "1-D array required" ); |
| 274 | #endif |
| 275 | Array a(1, expectation(t0, x0: x0[0], dt)); |
| 276 | return a; |
| 277 | } |
| 278 | |
| 279 | inline Matrix StochasticProcess1D::stdDeviation( |
| 280 | Time t0, const Array& x0, Time dt) const { |
| 281 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 282 | QL_REQUIRE(x0.size() == 1, "1-D array required" ); |
| 283 | #endif |
| 284 | Matrix m(1, 1, stdDeviation(t0, x0: x0[0], dt)); |
| 285 | return m; |
| 286 | } |
| 287 | |
| 288 | inline Matrix StochasticProcess1D::covariance( |
| 289 | Time t0, const Array& x0, Time dt) const { |
| 290 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 291 | QL_REQUIRE(x0.size() == 1, "1-D array required" ); |
| 292 | #endif |
| 293 | Matrix m(1, 1, variance(t0, x0: x0[0], dt)); |
| 294 | return m; |
| 295 | } |
| 296 | |
| 297 | inline Array StochasticProcess1D::evolve(Time t0, const Array& x0, |
| 298 | Time dt, const Array& dw) const { |
| 299 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 300 | QL_REQUIRE(x0.size() == 1, "1-D array required" ); |
| 301 | QL_REQUIRE(dw.size() == 1, "1-D array required" ); |
| 302 | #endif |
| 303 | Array a(1, evolve(t0,x0: x0[0],dt,dw: dw[0])); |
| 304 | return a; |
| 305 | } |
| 306 | |
| 307 | inline Array StochasticProcess1D::apply(const Array& x0, |
| 308 | const Array& dx) const { |
| 309 | #if defined(QL_EXTRA_SAFETY_CHECKS) |
| 310 | QL_REQUIRE(x0.size() == 1, "1-D array required" ); |
| 311 | QL_REQUIRE(dx.size() == 1, "1-D array required" ); |
| 312 | #endif |
| 313 | Array a(1, apply(x0: x0[0],dx: dx[0])); |
| 314 | return a; |
| 315 | } |
| 316 | |
| 317 | } |
| 318 | |
| 319 | |
| 320 | #endif |
| 321 | |