| 1 | /* |
| 2 | * Performance events: |
| 3 | * |
| 4 | * Copyright (C) 2008-2009, Linutronix GmbH, Thomas Gleixner <tglx@kernel.org> |
| 5 | * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar |
| 6 | * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra |
| 7 | * |
| 8 | * Data type definitions, declarations, prototypes. |
| 9 | * |
| 10 | * Started by: Thomas Gleixner and Ingo Molnar |
| 11 | * |
| 12 | * For licencing details see kernel-base/COPYING |
| 13 | */ |
| 14 | #ifndef _LINUX_PERF_EVENT_H |
| 15 | #define _LINUX_PERF_EVENT_H |
| 16 | |
| 17 | #include <uapi/linux/perf_event.h> |
| 18 | #include <uapi/linux/bpf_perf_event.h> |
| 19 | |
| 20 | /* |
| 21 | * Kernel-internal data types and definitions: |
| 22 | */ |
| 23 | |
| 24 | #ifdef CONFIG_PERF_EVENTS |
| 25 | # include <asm/perf_event.h> |
| 26 | # include <asm/local64.h> |
| 27 | #endif |
| 28 | |
| 29 | #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| 30 | # include <linux/rhashtable-types.h> |
| 31 | # include <asm/hw_breakpoint.h> |
| 32 | #endif |
| 33 | |
| 34 | #include <linux/list.h> |
| 35 | #include <linux/mutex.h> |
| 36 | #include <linux/rculist.h> |
| 37 | #include <linux/rcupdate.h> |
| 38 | #include <linux/spinlock.h> |
| 39 | #include <linux/hrtimer.h> |
| 40 | #include <linux/fs.h> |
| 41 | #include <linux/pid_namespace.h> |
| 42 | #include <linux/workqueue.h> |
| 43 | #include <linux/ftrace.h> |
| 44 | #include <linux/cpu.h> |
| 45 | #include <linux/irq_work.h> |
| 46 | #include <linux/static_key.h> |
| 47 | #include <linux/jump_label_ratelimit.h> |
| 48 | #include <linux/atomic.h> |
| 49 | #include <linux/sysfs.h> |
| 50 | #include <linux/perf_regs.h> |
| 51 | #include <linux/cgroup.h> |
| 52 | #include <linux/refcount.h> |
| 53 | #include <linux/security.h> |
| 54 | #include <linux/static_call.h> |
| 55 | #include <linux/lockdep.h> |
| 56 | |
| 57 | #include <asm/local.h> |
| 58 | |
| 59 | struct perf_callchain_entry { |
| 60 | u64 nr; |
| 61 | u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ |
| 62 | }; |
| 63 | |
| 64 | struct perf_callchain_entry_ctx { |
| 65 | struct perf_callchain_entry *entry; |
| 66 | u32 max_stack; |
| 67 | u32 nr; |
| 68 | short contexts; |
| 69 | bool contexts_maxed; |
| 70 | }; |
| 71 | |
| 72 | typedef unsigned long (*perf_copy_f)(void *dst, const void *src, |
| 73 | unsigned long off, unsigned long len); |
| 74 | |
| 75 | struct perf_raw_frag { |
| 76 | union { |
| 77 | struct perf_raw_frag *next; |
| 78 | unsigned long pad; |
| 79 | }; |
| 80 | perf_copy_f copy; |
| 81 | void *data; |
| 82 | u32 size; |
| 83 | } __packed; |
| 84 | |
| 85 | struct perf_raw_record { |
| 86 | struct perf_raw_frag frag; |
| 87 | u32 size; |
| 88 | }; |
| 89 | |
| 90 | static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) |
| 91 | { |
| 92 | return frag->pad < sizeof(u64); |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * branch stack layout: |
| 97 | * nr: number of taken branches stored in entries[] |
| 98 | * hw_idx: The low level index of raw branch records |
| 99 | * for the most recent branch. |
| 100 | * -1ULL means invalid/unknown. |
| 101 | * |
| 102 | * Note that nr can vary from sample to sample |
| 103 | * branches (to, from) are stored from most recent |
| 104 | * to least recent, i.e., entries[0] contains the most |
| 105 | * recent branch. |
| 106 | * The entries[] is an abstraction of raw branch records, |
| 107 | * which may not be stored in age order in HW, e.g. Intel LBR. |
| 108 | * The hw_idx is to expose the low level index of raw |
| 109 | * branch record for the most recent branch aka entries[0]. |
| 110 | * The hw_idx index is between -1 (unknown) and max depth, |
| 111 | * which can be retrieved in /sys/devices/cpu/caps/branches. |
| 112 | * For the architectures whose raw branch records are |
| 113 | * already stored in age order, the hw_idx should be 0. |
| 114 | */ |
| 115 | struct perf_branch_stack { |
| 116 | u64 nr; |
| 117 | u64 hw_idx; |
| 118 | struct perf_branch_entry entries[]; |
| 119 | }; |
| 120 | |
| 121 | struct task_struct; |
| 122 | |
| 123 | /* |
| 124 | * extra PMU register associated with an event |
| 125 | */ |
| 126 | struct { |
| 127 | u64 ; /* register value */ |
| 128 | unsigned int ; /* register address or index */ |
| 129 | int ; /* extra register already allocated */ |
| 130 | int ; /* index in shared_regs->regs[] */ |
| 131 | }; |
| 132 | |
| 133 | /** |
| 134 | * hw_perf_event::flag values |
| 135 | * |
| 136 | * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific |
| 137 | * usage. |
| 138 | */ |
| 139 | #define PERF_EVENT_FLAG_ARCH 0x0fffffff |
| 140 | #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 |
| 141 | |
| 142 | static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); |
| 143 | |
| 144 | /** |
| 145 | * struct hw_perf_event - performance event hardware details: |
| 146 | */ |
| 147 | struct hw_perf_event { |
| 148 | #ifdef CONFIG_PERF_EVENTS |
| 149 | union { |
| 150 | struct { /* hardware */ |
| 151 | u64 config; |
| 152 | u64 config1; |
| 153 | u64 last_tag; |
| 154 | u64 dyn_constraint; |
| 155 | unsigned long config_base; |
| 156 | unsigned long event_base; |
| 157 | int event_base_rdpmc; |
| 158 | int idx; |
| 159 | int last_cpu; |
| 160 | int flags; |
| 161 | |
| 162 | struct hw_perf_event_extra ; |
| 163 | struct hw_perf_event_extra branch_reg; |
| 164 | }; |
| 165 | struct { /* aux / Intel-PT */ |
| 166 | u64 aux_config; |
| 167 | /* |
| 168 | * For AUX area events, aux_paused cannot be a state |
| 169 | * flag because it can be updated asynchronously to |
| 170 | * state. |
| 171 | */ |
| 172 | unsigned int aux_paused; |
| 173 | }; |
| 174 | struct { /* software */ |
| 175 | struct hrtimer hrtimer; |
| 176 | }; |
| 177 | struct { /* tracepoint */ |
| 178 | /* for tp_event->class */ |
| 179 | struct list_head tp_list; |
| 180 | }; |
| 181 | struct { /* amd_power */ |
| 182 | u64 pwr_acc; |
| 183 | u64 ptsc; |
| 184 | }; |
| 185 | #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| 186 | struct { /* breakpoint */ |
| 187 | /* |
| 188 | * Crufty hack to avoid the chicken and egg |
| 189 | * problem hw_breakpoint has with context |
| 190 | * creation and event initalization. |
| 191 | */ |
| 192 | struct arch_hw_breakpoint info; |
| 193 | struct rhlist_head bp_list; |
| 194 | }; |
| 195 | #endif |
| 196 | struct { /* amd_iommu */ |
| 197 | u8 iommu_bank; |
| 198 | u8 iommu_cntr; |
| 199 | u16 padding; |
| 200 | u64 conf; |
| 201 | u64 conf1; |
| 202 | }; |
| 203 | }; |
| 204 | /* |
| 205 | * If the event is a per task event, this will point to the task in |
| 206 | * question. See the comment in perf_event_alloc(). |
| 207 | */ |
| 208 | struct task_struct *target; |
| 209 | |
| 210 | /* |
| 211 | * PMU would store hardware filter configuration |
| 212 | * here. |
| 213 | */ |
| 214 | void *addr_filters; |
| 215 | |
| 216 | /* Last sync'ed generation of filters */ |
| 217 | unsigned long addr_filters_gen; |
| 218 | |
| 219 | /* |
| 220 | * hw_perf_event::state flags; used to track the PERF_EF_* state. |
| 221 | */ |
| 222 | |
| 223 | /* the counter is stopped */ |
| 224 | #define PERF_HES_STOPPED 0x01 |
| 225 | |
| 226 | /* event->count up-to-date */ |
| 227 | #define PERF_HES_UPTODATE 0x02 |
| 228 | |
| 229 | #define PERF_HES_ARCH 0x04 |
| 230 | |
| 231 | int state; |
| 232 | |
| 233 | /* |
| 234 | * The last observed hardware counter value, updated with a |
| 235 | * local64_cmpxchg() such that pmu::read() can be called nested. |
| 236 | */ |
| 237 | local64_t prev_count; |
| 238 | |
| 239 | /* |
| 240 | * The period to start the next sample with. |
| 241 | */ |
| 242 | u64 sample_period; |
| 243 | |
| 244 | union { |
| 245 | struct { /* Sampling */ |
| 246 | /* |
| 247 | * The period we started this sample with. |
| 248 | */ |
| 249 | u64 last_period; |
| 250 | |
| 251 | /* |
| 252 | * However much is left of the current period; |
| 253 | * note that this is a full 64bit value and |
| 254 | * allows for generation of periods longer |
| 255 | * than hardware might allow. |
| 256 | */ |
| 257 | local64_t period_left; |
| 258 | }; |
| 259 | struct { /* Topdown events counting for context switch */ |
| 260 | u64 saved_metric; |
| 261 | u64 saved_slots; |
| 262 | }; |
| 263 | }; |
| 264 | |
| 265 | /* |
| 266 | * State for throttling the event, see __perf_event_overflow() and |
| 267 | * perf_adjust_freq_unthr_context(). |
| 268 | */ |
| 269 | u64 interrupts_seq; |
| 270 | u64 interrupts; |
| 271 | |
| 272 | /* |
| 273 | * State for freq target events, see __perf_event_overflow() and |
| 274 | * perf_adjust_freq_unthr_context(). |
| 275 | */ |
| 276 | u64 freq_time_stamp; |
| 277 | u64 freq_count_stamp; |
| 278 | #endif /* CONFIG_PERF_EVENTS */ |
| 279 | }; |
| 280 | |
| 281 | struct perf_event; |
| 282 | struct perf_event_pmu_context; |
| 283 | |
| 284 | /* |
| 285 | * Common implementation detail of pmu::{start,commit,cancel}_txn |
| 286 | */ |
| 287 | |
| 288 | /* txn to add/schedule event on PMU */ |
| 289 | #define PERF_PMU_TXN_ADD 0x1 |
| 290 | |
| 291 | /* txn to read event group from PMU */ |
| 292 | #define PERF_PMU_TXN_READ 0x2 |
| 293 | |
| 294 | /** |
| 295 | * pmu::capabilities flags |
| 296 | */ |
| 297 | #define PERF_PMU_CAP_NO_INTERRUPT 0x0001 |
| 298 | #define PERF_PMU_CAP_NO_NMI 0x0002 |
| 299 | #define PERF_PMU_CAP_AUX_NO_SG 0x0004 |
| 300 | #define PERF_PMU_CAP_EXTENDED_REGS 0x0008 |
| 301 | #define PERF_PMU_CAP_EXCLUSIVE 0x0010 |
| 302 | #define PERF_PMU_CAP_ITRACE 0x0020 |
| 303 | #define PERF_PMU_CAP_NO_EXCLUDE 0x0040 |
| 304 | #define PERF_PMU_CAP_AUX_OUTPUT 0x0080 |
| 305 | #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 |
| 306 | #define PERF_PMU_CAP_AUX_PAUSE 0x0200 |
| 307 | #define PERF_PMU_CAP_AUX_PREFER_LARGE 0x0400 |
| 308 | |
| 309 | /** |
| 310 | * pmu::scope |
| 311 | */ |
| 312 | enum perf_pmu_scope { |
| 313 | PERF_PMU_SCOPE_NONE = 0, |
| 314 | PERF_PMU_SCOPE_CORE, |
| 315 | PERF_PMU_SCOPE_DIE, |
| 316 | PERF_PMU_SCOPE_CLUSTER, |
| 317 | PERF_PMU_SCOPE_PKG, |
| 318 | PERF_PMU_SCOPE_SYS_WIDE, |
| 319 | PERF_PMU_MAX_SCOPE, |
| 320 | }; |
| 321 | |
| 322 | struct perf_output_handle; |
| 323 | |
| 324 | #define PMU_NULL_DEV ((void *)(~0UL)) |
| 325 | |
| 326 | /** |
| 327 | * struct pmu - generic performance monitoring unit |
| 328 | */ |
| 329 | struct pmu { |
| 330 | struct list_head entry; |
| 331 | |
| 332 | spinlock_t events_lock; |
| 333 | struct list_head events; |
| 334 | |
| 335 | struct module *module; |
| 336 | struct device *dev; |
| 337 | struct device *parent; |
| 338 | const struct attribute_group **attr_groups; |
| 339 | const struct attribute_group **attr_update; |
| 340 | const char *name; |
| 341 | int type; |
| 342 | |
| 343 | /* |
| 344 | * various common per-pmu feature flags |
| 345 | */ |
| 346 | int capabilities; |
| 347 | |
| 348 | /* |
| 349 | * PMU scope |
| 350 | */ |
| 351 | unsigned int scope; |
| 352 | |
| 353 | struct perf_cpu_pmu_context * __percpu *cpu_pmu_context; |
| 354 | atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ |
| 355 | int task_ctx_nr; |
| 356 | int hrtimer_interval_ms; |
| 357 | |
| 358 | /* number of address filters this PMU can do */ |
| 359 | unsigned int nr_addr_filters; |
| 360 | |
| 361 | /* |
| 362 | * Fully disable/enable this PMU, can be used to protect from the PMI |
| 363 | * as well as for lazy/batch writing of the MSRs. |
| 364 | */ |
| 365 | void (*pmu_enable) (struct pmu *pmu); /* optional */ |
| 366 | void (*pmu_disable) (struct pmu *pmu); /* optional */ |
| 367 | |
| 368 | /* |
| 369 | * Try and initialize the event for this PMU. |
| 370 | * |
| 371 | * Returns: |
| 372 | * -ENOENT -- @event is not for this PMU |
| 373 | * |
| 374 | * -ENODEV -- @event is for this PMU but PMU not present |
| 375 | * -EBUSY -- @event is for this PMU but PMU temporarily unavailable |
| 376 | * -EINVAL -- @event is for this PMU but @event is not valid |
| 377 | * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported |
| 378 | * -EACCES -- @event is for this PMU, @event is valid, but no privileges |
| 379 | * |
| 380 | * 0 -- @event is for this PMU and valid |
| 381 | * |
| 382 | * Other error return values are allowed. |
| 383 | */ |
| 384 | int (*event_init) (struct perf_event *event); |
| 385 | |
| 386 | /* |
| 387 | * Notification that the event was mapped or unmapped. Called |
| 388 | * in the context of the mapping task. |
| 389 | */ |
| 390 | void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ |
| 391 | void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ |
| 392 | |
| 393 | /* |
| 394 | * Flags for ->add()/->del()/ ->start()/->stop(). There are |
| 395 | * matching hw_perf_event::state flags. |
| 396 | */ |
| 397 | |
| 398 | /* start the counter when adding */ |
| 399 | #define PERF_EF_START 0x01 |
| 400 | |
| 401 | /* reload the counter when starting */ |
| 402 | #define PERF_EF_RELOAD 0x02 |
| 403 | |
| 404 | /* update the counter when stopping */ |
| 405 | #define PERF_EF_UPDATE 0x04 |
| 406 | |
| 407 | /* AUX area event, pause tracing */ |
| 408 | #define PERF_EF_PAUSE 0x08 |
| 409 | |
| 410 | /* AUX area event, resume tracing */ |
| 411 | #define PERF_EF_RESUME 0x10 |
| 412 | |
| 413 | /* |
| 414 | * Adds/Removes a counter to/from the PMU, can be done inside a |
| 415 | * transaction, see the ->*_txn() methods. |
| 416 | * |
| 417 | * The add/del callbacks will reserve all hardware resources required |
| 418 | * to service the event, this includes any counter constraint |
| 419 | * scheduling etc. |
| 420 | * |
| 421 | * Called with IRQs disabled and the PMU disabled on the CPU the event |
| 422 | * is on. |
| 423 | * |
| 424 | * ->add() called without PERF_EF_START should result in the same state |
| 425 | * as ->add() followed by ->stop(). |
| 426 | * |
| 427 | * ->del() must always PERF_EF_UPDATE stop an event. If it calls |
| 428 | * ->stop() that must deal with already being stopped without |
| 429 | * PERF_EF_UPDATE. |
| 430 | */ |
| 431 | int (*add) (struct perf_event *event, int flags); |
| 432 | void (*del) (struct perf_event *event, int flags); |
| 433 | |
| 434 | /* |
| 435 | * Starts/Stops a counter present on the PMU. |
| 436 | * |
| 437 | * The PMI handler should stop the counter when perf_event_overflow() |
| 438 | * returns !0. ->start() will be used to continue. |
| 439 | * |
| 440 | * Also used to change the sample period. |
| 441 | * |
| 442 | * Called with IRQs disabled and the PMU disabled on the CPU the event |
| 443 | * is on -- will be called from NMI context with the PMU generates |
| 444 | * NMIs. |
| 445 | * |
| 446 | * ->stop() with PERF_EF_UPDATE will read the counter and update |
| 447 | * period/count values like ->read() would. |
| 448 | * |
| 449 | * ->start() with PERF_EF_RELOAD will reprogram the counter |
| 450 | * value, must be preceded by a ->stop() with PERF_EF_UPDATE. |
| 451 | * |
| 452 | * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not |
| 453 | * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with |
| 454 | * PERF_EF_RESUME. |
| 455 | * |
| 456 | * ->start() with PERF_EF_RESUME will start as simply as possible but |
| 457 | * only if the counter is not otherwise stopped. Will not overlap |
| 458 | * another ->start() with PERF_EF_RESUME nor ->stop() with |
| 459 | * PERF_EF_PAUSE. |
| 460 | * |
| 461 | * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other |
| 462 | * ->stop()/->start() invocations, just not itself. |
| 463 | */ |
| 464 | void (*start) (struct perf_event *event, int flags); |
| 465 | void (*stop) (struct perf_event *event, int flags); |
| 466 | |
| 467 | /* |
| 468 | * Updates the counter value of the event. |
| 469 | * |
| 470 | * For sampling capable PMUs this will also update the software period |
| 471 | * hw_perf_event::period_left field. |
| 472 | */ |
| 473 | void (*read) (struct perf_event *event); |
| 474 | |
| 475 | /* |
| 476 | * Group events scheduling is treated as a transaction, add |
| 477 | * group events as a whole and perform one schedulability test. |
| 478 | * If the test fails, roll back the whole group |
| 479 | * |
| 480 | * Start the transaction, after this ->add() doesn't need to |
| 481 | * do schedulability tests. |
| 482 | * |
| 483 | * Optional. |
| 484 | */ |
| 485 | void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); |
| 486 | /* |
| 487 | * If ->start_txn() disabled the ->add() schedulability test |
| 488 | * then ->commit_txn() is required to perform one. On success |
| 489 | * the transaction is closed. On error the transaction is kept |
| 490 | * open until ->cancel_txn() is called. |
| 491 | * |
| 492 | * Optional. |
| 493 | */ |
| 494 | int (*commit_txn) (struct pmu *pmu); |
| 495 | /* |
| 496 | * Will cancel the transaction, assumes ->del() is called |
| 497 | * for each successful ->add() during the transaction. |
| 498 | * |
| 499 | * Optional. |
| 500 | */ |
| 501 | void (*cancel_txn) (struct pmu *pmu); |
| 502 | |
| 503 | /* |
| 504 | * Will return the value for perf_event_mmap_page::index for this event, |
| 505 | * if no implementation is provided it will default to 0 (see |
| 506 | * perf_event_idx_default). |
| 507 | */ |
| 508 | int (*event_idx) (struct perf_event *event); /*optional */ |
| 509 | |
| 510 | /* |
| 511 | * context-switches callback |
| 512 | */ |
| 513 | void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, |
| 514 | struct task_struct *task, bool sched_in); |
| 515 | |
| 516 | /* |
| 517 | * Kmem cache of PMU specific data |
| 518 | */ |
| 519 | struct kmem_cache *task_ctx_cache; |
| 520 | |
| 521 | /* |
| 522 | * Set up pmu-private data structures for an AUX area |
| 523 | */ |
| 524 | void *(*setup_aux) (struct perf_event *event, void **pages, |
| 525 | int nr_pages, bool overwrite); |
| 526 | /* optional */ |
| 527 | |
| 528 | /* |
| 529 | * Free pmu-private AUX data structures |
| 530 | */ |
| 531 | void (*free_aux) (void *aux); /* optional */ |
| 532 | |
| 533 | /* |
| 534 | * Take a snapshot of the AUX buffer without touching the event |
| 535 | * state, so that preempting ->start()/->stop() callbacks does |
| 536 | * not interfere with their logic. Called in PMI context. |
| 537 | * |
| 538 | * Returns the size of AUX data copied to the output handle. |
| 539 | * |
| 540 | * Optional. |
| 541 | */ |
| 542 | long (*snapshot_aux) (struct perf_event *event, |
| 543 | struct perf_output_handle *handle, |
| 544 | unsigned long size); |
| 545 | |
| 546 | /* |
| 547 | * Validate address range filters: make sure the HW supports the |
| 548 | * requested configuration and number of filters; return 0 if the |
| 549 | * supplied filters are valid, -errno otherwise. |
| 550 | * |
| 551 | * Runs in the context of the ioctl()ing process and is not serialized |
| 552 | * with the rest of the PMU callbacks. |
| 553 | */ |
| 554 | int (*addr_filters_validate) (struct list_head *filters); |
| 555 | /* optional */ |
| 556 | |
| 557 | /* |
| 558 | * Synchronize address range filter configuration: |
| 559 | * translate hw-agnostic filters into hardware configuration in |
| 560 | * event::hw::addr_filters. |
| 561 | * |
| 562 | * Runs as a part of filter sync sequence that is done in ->start() |
| 563 | * callback by calling perf_event_addr_filters_sync(). |
| 564 | * |
| 565 | * May (and should) traverse event::addr_filters::list, for which its |
| 566 | * caller provides necessary serialization. |
| 567 | */ |
| 568 | void (*addr_filters_sync) (struct perf_event *event); |
| 569 | /* optional */ |
| 570 | |
| 571 | /* |
| 572 | * Check if event can be used for aux_output purposes for |
| 573 | * events of this PMU. |
| 574 | * |
| 575 | * Runs from perf_event_open(). Should return 0 for "no match" |
| 576 | * or non-zero for "match". |
| 577 | */ |
| 578 | int (*aux_output_match) (struct perf_event *event); |
| 579 | /* optional */ |
| 580 | |
| 581 | /* |
| 582 | * Skip programming this PMU on the given CPU. Typically needed for |
| 583 | * big.LITTLE things. |
| 584 | */ |
| 585 | bool (*filter) (struct pmu *pmu, int cpu); /* optional */ |
| 586 | |
| 587 | /* |
| 588 | * Check period value for PERF_EVENT_IOC_PERIOD ioctl. |
| 589 | */ |
| 590 | int (*check_period) (struct perf_event *event, u64 value); /* optional */ |
| 591 | }; |
| 592 | |
| 593 | enum perf_addr_filter_action_t { |
| 594 | PERF_ADDR_FILTER_ACTION_STOP = 0, |
| 595 | PERF_ADDR_FILTER_ACTION_START, |
| 596 | PERF_ADDR_FILTER_ACTION_FILTER, |
| 597 | }; |
| 598 | |
| 599 | /** |
| 600 | * struct perf_addr_filter - address range filter definition |
| 601 | * @entry: event's filter list linkage |
| 602 | * @path: object file's path for file-based filters |
| 603 | * @offset: filter range offset |
| 604 | * @size: filter range size (size==0 means single address trigger) |
| 605 | * @action: filter/start/stop |
| 606 | * |
| 607 | * This is a hardware-agnostic filter configuration as specified by the user. |
| 608 | */ |
| 609 | struct perf_addr_filter { |
| 610 | struct list_head entry; |
| 611 | struct path path; |
| 612 | unsigned long offset; |
| 613 | unsigned long size; |
| 614 | enum perf_addr_filter_action_t action; |
| 615 | }; |
| 616 | |
| 617 | /** |
| 618 | * struct perf_addr_filters_head - container for address range filters |
| 619 | * @list: list of filters for this event |
| 620 | * @lock: spinlock that serializes accesses to the @list and event's |
| 621 | * (and its children's) filter generations. |
| 622 | * @nr_file_filters: number of file-based filters |
| 623 | * |
| 624 | * A child event will use parent's @list (and therefore @lock), so they are |
| 625 | * bundled together; see perf_event_addr_filters(). |
| 626 | */ |
| 627 | struct perf_addr_filters_head { |
| 628 | struct list_head list; |
| 629 | raw_spinlock_t lock; |
| 630 | unsigned int nr_file_filters; |
| 631 | }; |
| 632 | |
| 633 | struct perf_addr_filter_range { |
| 634 | unsigned long start; |
| 635 | unsigned long size; |
| 636 | }; |
| 637 | |
| 638 | /* |
| 639 | * The normal states are: |
| 640 | * |
| 641 | * ACTIVE --. |
| 642 | * ^ | |
| 643 | * | | |
| 644 | * sched_{in,out}() | |
| 645 | * | | |
| 646 | * v | |
| 647 | * ,---> INACTIVE --+ <-. |
| 648 | * | | | |
| 649 | * | {dis,en}able() |
| 650 | * sched_in() | | |
| 651 | * | OFF <--' --+ |
| 652 | * | | |
| 653 | * `---> ERROR ------' |
| 654 | * |
| 655 | * That is: |
| 656 | * |
| 657 | * sched_in: INACTIVE -> {ACTIVE,ERROR} |
| 658 | * sched_out: ACTIVE -> INACTIVE |
| 659 | * disable: {ACTIVE,INACTIVE} -> OFF |
| 660 | * enable: {OFF,ERROR} -> INACTIVE |
| 661 | * |
| 662 | * Where {OFF,ERROR} are disabled states. |
| 663 | * |
| 664 | * Then we have the {EXIT,REVOKED,DEAD} states which are various shades of |
| 665 | * defunct events: |
| 666 | * |
| 667 | * - EXIT means task that the even was assigned to died, but child events |
| 668 | * still live, and further children can still be created. But the event |
| 669 | * itself will never be active again. It can only transition to |
| 670 | * {REVOKED,DEAD}; |
| 671 | * |
| 672 | * - REVOKED means the PMU the event was associated with is gone; all |
| 673 | * functionality is stopped but the event is still alive. Can only |
| 674 | * transition to DEAD; |
| 675 | * |
| 676 | * - DEAD event really is DYING tearing down state and freeing bits. |
| 677 | * |
| 678 | */ |
| 679 | enum perf_event_state { |
| 680 | PERF_EVENT_STATE_DEAD = -5, |
| 681 | PERF_EVENT_STATE_REVOKED = -4, /* pmu gone, must not touch */ |
| 682 | PERF_EVENT_STATE_EXIT = -3, /* task died, still inherit */ |
| 683 | PERF_EVENT_STATE_ERROR = -2, /* scheduling error, can enable */ |
| 684 | PERF_EVENT_STATE_OFF = -1, |
| 685 | PERF_EVENT_STATE_INACTIVE = 0, |
| 686 | PERF_EVENT_STATE_ACTIVE = 1, |
| 687 | }; |
| 688 | |
| 689 | struct file; |
| 690 | struct perf_sample_data; |
| 691 | |
| 692 | typedef void (*perf_overflow_handler_t)(struct perf_event *, |
| 693 | struct perf_sample_data *, |
| 694 | struct pt_regs *regs); |
| 695 | |
| 696 | /* |
| 697 | * Event capabilities. For event_caps and groups caps. |
| 698 | * |
| 699 | * PERF_EV_CAP_SOFTWARE: Is a software event. |
| 700 | * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read |
| 701 | * from any CPU in the package where it is active. |
| 702 | * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and |
| 703 | * cannot be a group leader. If an event with this flag is detached from the |
| 704 | * group it is scheduled out and moved into an unrecoverable ERROR state. |
| 705 | * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the |
| 706 | * PMU scope where it is active. |
| 707 | */ |
| 708 | #define PERF_EV_CAP_SOFTWARE BIT(0) |
| 709 | #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) |
| 710 | #define PERF_EV_CAP_SIBLING BIT(2) |
| 711 | #define PERF_EV_CAP_READ_SCOPE BIT(3) |
| 712 | |
| 713 | #define SWEVENT_HLIST_BITS 8 |
| 714 | #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) |
| 715 | |
| 716 | struct swevent_hlist { |
| 717 | struct hlist_head heads[SWEVENT_HLIST_SIZE]; |
| 718 | struct rcu_head rcu_head; |
| 719 | }; |
| 720 | |
| 721 | #define PERF_ATTACH_CONTEXT 0x0001 |
| 722 | #define PERF_ATTACH_GROUP 0x0002 |
| 723 | #define PERF_ATTACH_TASK 0x0004 |
| 724 | #define PERF_ATTACH_TASK_DATA 0x0008 |
| 725 | #define PERF_ATTACH_GLOBAL_DATA 0x0010 |
| 726 | #define PERF_ATTACH_SCHED_CB 0x0020 |
| 727 | #define PERF_ATTACH_CHILD 0x0040 |
| 728 | #define PERF_ATTACH_EXCLUSIVE 0x0080 |
| 729 | #define PERF_ATTACH_CALLCHAIN 0x0100 |
| 730 | #define PERF_ATTACH_ITRACE 0x0200 |
| 731 | |
| 732 | struct bpf_prog; |
| 733 | struct perf_cgroup; |
| 734 | struct perf_buffer; |
| 735 | |
| 736 | struct pmu_event_list { |
| 737 | raw_spinlock_t lock; |
| 738 | struct list_head list; |
| 739 | }; |
| 740 | |
| 741 | /* |
| 742 | * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex |
| 743 | * as such iteration must hold either lock. However, since ctx->lock is an IRQ |
| 744 | * safe lock, and is only held by the CPU doing the modification, having IRQs |
| 745 | * disabled is sufficient since it will hold-off the IPIs. |
| 746 | */ |
| 747 | #ifdef CONFIG_PROVE_LOCKING |
| 748 | # define lockdep_assert_event_ctx(event) \ |
| 749 | WARN_ON_ONCE(__lockdep_enabled && \ |
| 750 | (this_cpu_read(hardirqs_enabled) && \ |
| 751 | lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) |
| 752 | #else |
| 753 | # define lockdep_assert_event_ctx(event) |
| 754 | #endif |
| 755 | |
| 756 | #define for_each_sibling_event(sibling, event) \ |
| 757 | lockdep_assert_event_ctx(event); \ |
| 758 | if ((event)->group_leader == (event)) \ |
| 759 | list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) |
| 760 | |
| 761 | /** |
| 762 | * struct perf_event - performance event kernel representation: |
| 763 | */ |
| 764 | struct perf_event { |
| 765 | #ifdef CONFIG_PERF_EVENTS |
| 766 | /* |
| 767 | * entry onto perf_event_context::event_list; |
| 768 | * modifications require ctx->lock |
| 769 | * RCU safe iterations. |
| 770 | */ |
| 771 | struct list_head event_entry; |
| 772 | |
| 773 | /* |
| 774 | * Locked for modification by both ctx->mutex and ctx->lock; holding |
| 775 | * either sufficies for read. |
| 776 | */ |
| 777 | struct list_head sibling_list; |
| 778 | struct list_head active_list; |
| 779 | /* |
| 780 | * Node on the pinned or flexible tree located at the event context; |
| 781 | */ |
| 782 | struct rb_node group_node; |
| 783 | u64 group_index; |
| 784 | /* |
| 785 | * We need storage to track the entries in perf_pmu_migrate_context; we |
| 786 | * cannot use the event_entry because of RCU and we want to keep the |
| 787 | * group in tact which avoids us using the other two entries. |
| 788 | */ |
| 789 | struct list_head migrate_entry; |
| 790 | |
| 791 | struct hlist_node hlist_entry; |
| 792 | struct list_head active_entry; |
| 793 | int nr_siblings; |
| 794 | |
| 795 | /* Not serialized. Only written during event initialization. */ |
| 796 | int event_caps; |
| 797 | /* The cumulative AND of all event_caps for events in this group. */ |
| 798 | int group_caps; |
| 799 | |
| 800 | unsigned int group_generation; |
| 801 | struct perf_event *group_leader; |
| 802 | /* |
| 803 | * event->pmu will always point to pmu in which this event belongs. |
| 804 | * Whereas event->pmu_ctx->pmu may point to other pmu when group of |
| 805 | * different pmu events is created. |
| 806 | */ |
| 807 | struct pmu *pmu; |
| 808 | void *pmu_private; |
| 809 | |
| 810 | enum perf_event_state state; |
| 811 | unsigned int attach_state; |
| 812 | local64_t count; |
| 813 | atomic64_t child_count; |
| 814 | |
| 815 | /* |
| 816 | * These are the total time in nanoseconds that the event |
| 817 | * has been enabled (i.e. eligible to run, and the task has |
| 818 | * been scheduled in, if this is a per-task event) |
| 819 | * and running (scheduled onto the CPU), respectively. |
| 820 | */ |
| 821 | u64 total_time_enabled; |
| 822 | u64 total_time_running; |
| 823 | u64 tstamp; |
| 824 | |
| 825 | struct perf_event_attr attr; |
| 826 | u16 ; |
| 827 | u16 ; |
| 828 | u16 read_size; |
| 829 | struct hw_perf_event hw; |
| 830 | |
| 831 | struct perf_event_context *ctx; |
| 832 | /* |
| 833 | * event->pmu_ctx points to perf_event_pmu_context in which the event |
| 834 | * is added. This pmu_ctx can be of other pmu for sw event when that |
| 835 | * sw event is part of a group which also contains non-sw events. |
| 836 | */ |
| 837 | struct perf_event_pmu_context *pmu_ctx; |
| 838 | atomic_long_t refcount; |
| 839 | |
| 840 | /* |
| 841 | * These accumulate total time (in nanoseconds) that children |
| 842 | * events have been enabled and running, respectively. |
| 843 | */ |
| 844 | atomic64_t child_total_time_enabled; |
| 845 | atomic64_t child_total_time_running; |
| 846 | |
| 847 | /* |
| 848 | * Protect attach/detach and child_list: |
| 849 | */ |
| 850 | struct mutex child_mutex; |
| 851 | struct list_head child_list; |
| 852 | struct perf_event *parent; |
| 853 | |
| 854 | int oncpu; |
| 855 | int cpu; |
| 856 | |
| 857 | struct list_head owner_entry; |
| 858 | struct task_struct *owner; |
| 859 | |
| 860 | /* mmap bits */ |
| 861 | struct mutex mmap_mutex; |
| 862 | refcount_t mmap_count; |
| 863 | |
| 864 | struct perf_buffer *rb; |
| 865 | struct list_head rb_entry; |
| 866 | unsigned long rcu_batches; |
| 867 | int rcu_pending; |
| 868 | |
| 869 | /* poll related */ |
| 870 | wait_queue_head_t waitq; |
| 871 | struct fasync_struct *fasync; |
| 872 | |
| 873 | /* delayed work for NMIs and such */ |
| 874 | unsigned int pending_wakeup; |
| 875 | unsigned int pending_kill; |
| 876 | unsigned int pending_disable; |
| 877 | unsigned long pending_addr; /* SIGTRAP */ |
| 878 | struct irq_work pending_irq; |
| 879 | struct irq_work pending_disable_irq; |
| 880 | struct callback_head pending_task; |
| 881 | unsigned int pending_work; |
| 882 | |
| 883 | atomic_t event_limit; |
| 884 | |
| 885 | /* address range filters */ |
| 886 | struct perf_addr_filters_head addr_filters; |
| 887 | /* vma address array for file-based filders */ |
| 888 | struct perf_addr_filter_range *addr_filter_ranges; |
| 889 | unsigned long addr_filters_gen; |
| 890 | |
| 891 | /* for aux_output events */ |
| 892 | struct perf_event *aux_event; |
| 893 | |
| 894 | void (*destroy)(struct perf_event *); |
| 895 | struct rcu_head rcu_head; |
| 896 | |
| 897 | struct pid_namespace *ns; |
| 898 | u64 id; |
| 899 | |
| 900 | atomic64_t lost_samples; |
| 901 | |
| 902 | u64 (*clock)(void); |
| 903 | perf_overflow_handler_t overflow_handler; |
| 904 | void *overflow_handler_context; |
| 905 | struct bpf_prog *prog; |
| 906 | u64 bpf_cookie; |
| 907 | |
| 908 | #ifdef CONFIG_EVENT_TRACING |
| 909 | struct trace_event_call *tp_event; |
| 910 | struct event_filter *filter; |
| 911 | # ifdef CONFIG_FUNCTION_TRACER |
| 912 | struct ftrace_ops ftrace_ops; |
| 913 | # endif |
| 914 | #endif |
| 915 | |
| 916 | #ifdef CONFIG_CGROUP_PERF |
| 917 | struct perf_cgroup *cgrp; /* cgroup event is attach to */ |
| 918 | #endif |
| 919 | |
| 920 | #ifdef CONFIG_SECURITY |
| 921 | void *security; |
| 922 | #endif |
| 923 | struct list_head sb_list; |
| 924 | struct list_head pmu_list; |
| 925 | |
| 926 | /* |
| 927 | * Certain events gets forwarded to another pmu internally by over- |
| 928 | * writing kernel copy of event->attr.type without user being aware |
| 929 | * of it. event->orig_type contains original 'type' requested by |
| 930 | * user. |
| 931 | */ |
| 932 | u32 orig_type; |
| 933 | #endif /* CONFIG_PERF_EVENTS */ |
| 934 | }; |
| 935 | |
| 936 | /* |
| 937 | * ,-----------------------[1:n]------------------------. |
| 938 | * V V |
| 939 | * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event |
| 940 | * | | |
| 941 | * `--[n:1]-> pmu <-[1:n]--' |
| 942 | * |
| 943 | * |
| 944 | * struct perf_event_pmu_context lifetime is refcount based and RCU freed |
| 945 | * (similar to perf_event_context). Locking is as if it were a member of |
| 946 | * perf_event_context; specifically: |
| 947 | * |
| 948 | * modification, both: ctx->mutex && ctx->lock |
| 949 | * reading, either: ctx->mutex || ctx->lock |
| 950 | * |
| 951 | * There is one exception to this; namely put_pmu_ctx() isn't always called |
| 952 | * with ctx->mutex held; this means that as long as we can guarantee the epc |
| 953 | * has events the above rules hold. |
| 954 | * |
| 955 | * Specificially, sys_perf_event_open()'s group_leader case depends on |
| 956 | * ctx->mutex pinning the configuration. Since we hold a reference on |
| 957 | * group_leader (through the filedesc) it can't go away, therefore it's |
| 958 | * associated pmu_ctx must exist and cannot change due to ctx->mutex. |
| 959 | * |
| 960 | * perf_event holds a refcount on perf_event_context |
| 961 | * perf_event holds a refcount on perf_event_pmu_context |
| 962 | */ |
| 963 | struct perf_event_pmu_context { |
| 964 | struct pmu *pmu; |
| 965 | struct perf_event_context *ctx; |
| 966 | |
| 967 | struct list_head pmu_ctx_entry; |
| 968 | |
| 969 | struct list_head pinned_active; |
| 970 | struct list_head flexible_active; |
| 971 | |
| 972 | /* Used to identify the per-cpu perf_event_pmu_context */ |
| 973 | unsigned int embedded : 1; |
| 974 | |
| 975 | unsigned int nr_events; |
| 976 | unsigned int nr_cgroups; |
| 977 | unsigned int nr_freq; |
| 978 | |
| 979 | atomic_t refcount; /* event <-> epc */ |
| 980 | struct rcu_head rcu_head; |
| 981 | |
| 982 | /* |
| 983 | * Set when one or more (plausibly active) event can't be scheduled |
| 984 | * due to pmu overcommit or pmu constraints, except tolerant to |
| 985 | * events not necessary to be active due to scheduling constraints, |
| 986 | * such as cgroups. |
| 987 | */ |
| 988 | int rotate_necessary; |
| 989 | }; |
| 990 | |
| 991 | static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) |
| 992 | { |
| 993 | return !list_empty(head: &epc->flexible_active) || !list_empty(head: &epc->pinned_active); |
| 994 | } |
| 995 | |
| 996 | struct perf_event_groups { |
| 997 | struct rb_root tree; |
| 998 | u64 index; |
| 999 | }; |
| 1000 | |
| 1001 | |
| 1002 | /** |
| 1003 | * struct perf_event_context - event context structure |
| 1004 | * |
| 1005 | * Used as a container for task events and CPU events as well: |
| 1006 | */ |
| 1007 | struct perf_event_context { |
| 1008 | /* |
| 1009 | * Protect the states of the events in the list, |
| 1010 | * nr_active, and the list: |
| 1011 | */ |
| 1012 | raw_spinlock_t lock; |
| 1013 | /* |
| 1014 | * Protect the list of events. Locking either mutex or lock |
| 1015 | * is sufficient to ensure the list doesn't change; to change |
| 1016 | * the list you need to lock both the mutex and the spinlock. |
| 1017 | */ |
| 1018 | struct mutex mutex; |
| 1019 | |
| 1020 | struct list_head pmu_ctx_list; |
| 1021 | struct perf_event_groups pinned_groups; |
| 1022 | struct perf_event_groups flexible_groups; |
| 1023 | struct list_head event_list; |
| 1024 | |
| 1025 | int nr_events; |
| 1026 | int nr_user; |
| 1027 | int is_active; |
| 1028 | |
| 1029 | int nr_stat; |
| 1030 | int nr_freq; |
| 1031 | int rotate_disable; |
| 1032 | |
| 1033 | refcount_t refcount; /* event <-> ctx */ |
| 1034 | struct task_struct *task; |
| 1035 | |
| 1036 | /* |
| 1037 | * Context clock, runs when context enabled. |
| 1038 | */ |
| 1039 | u64 time; |
| 1040 | u64 timestamp; |
| 1041 | u64 timeoffset; |
| 1042 | |
| 1043 | /* |
| 1044 | * These fields let us detect when two contexts have both |
| 1045 | * been cloned (inherited) from a common ancestor. |
| 1046 | */ |
| 1047 | struct perf_event_context *parent_ctx; |
| 1048 | u64 parent_gen; |
| 1049 | u64 generation; |
| 1050 | int pin_count; |
| 1051 | #ifdef CONFIG_CGROUP_PERF |
| 1052 | int nr_cgroups; /* cgroup evts */ |
| 1053 | #endif |
| 1054 | struct rcu_head rcu_head; |
| 1055 | |
| 1056 | /* |
| 1057 | * The count of events for which using the switch-out fast path |
| 1058 | * should be avoided. |
| 1059 | * |
| 1060 | * Sum (event->pending_work + events with |
| 1061 | * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) |
| 1062 | * |
| 1063 | * The SIGTRAP is targeted at ctx->task, as such it won't do changing |
| 1064 | * that until the signal is delivered. |
| 1065 | */ |
| 1066 | local_t nr_no_switch_fast; |
| 1067 | }; |
| 1068 | |
| 1069 | /** |
| 1070 | * struct perf_ctx_data - PMU specific data for a task |
| 1071 | * @rcu_head: To avoid the race on free PMU specific data |
| 1072 | * @refcount: To track users |
| 1073 | * @global: To track system-wide users |
| 1074 | * @ctx_cache: Kmem cache of PMU specific data |
| 1075 | * @data: PMU specific data |
| 1076 | * |
| 1077 | * Currently, the struct is only used in Intel LBR call stack mode to |
| 1078 | * save/restore the call stack of a task on context switches. |
| 1079 | * |
| 1080 | * The rcu_head is used to prevent the race on free the data. |
| 1081 | * The data only be allocated when Intel LBR call stack mode is enabled. |
| 1082 | * The data will be freed when the mode is disabled. |
| 1083 | * The content of the data will only be accessed in context switch, which |
| 1084 | * should be protected by rcu_read_lock(). |
| 1085 | * |
| 1086 | * Because of the alignment requirement of Intel Arch LBR, the Kmem cache |
| 1087 | * is used to allocate the PMU specific data. The ctx_cache is to track |
| 1088 | * the Kmem cache. |
| 1089 | * |
| 1090 | * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct. |
| 1091 | * When system-wide Intel LBR call stack mode is enabled, a buffer with |
| 1092 | * constant size will be allocated for each task. |
| 1093 | * Also, system memory consumption can further grow when the size of |
| 1094 | * struct perf_ctx_data enlarges. |
| 1095 | */ |
| 1096 | struct perf_ctx_data { |
| 1097 | struct rcu_head rcu_head; |
| 1098 | refcount_t refcount; |
| 1099 | int global; |
| 1100 | struct kmem_cache *ctx_cache; |
| 1101 | void *data; |
| 1102 | }; |
| 1103 | |
| 1104 | struct perf_cpu_pmu_context { |
| 1105 | struct perf_event_pmu_context epc; |
| 1106 | struct perf_event_pmu_context *task_epc; |
| 1107 | |
| 1108 | struct list_head sched_cb_entry; |
| 1109 | int sched_cb_usage; |
| 1110 | |
| 1111 | int active_oncpu; |
| 1112 | int exclusive; |
| 1113 | int pmu_disable_count; |
| 1114 | |
| 1115 | raw_spinlock_t hrtimer_lock; |
| 1116 | struct hrtimer hrtimer; |
| 1117 | ktime_t hrtimer_interval; |
| 1118 | unsigned int hrtimer_active; |
| 1119 | }; |
| 1120 | |
| 1121 | /** |
| 1122 | * struct perf_event_cpu_context - per cpu event context structure |
| 1123 | */ |
| 1124 | struct perf_cpu_context { |
| 1125 | struct perf_event_context ctx; |
| 1126 | struct perf_event_context *task_ctx; |
| 1127 | int online; |
| 1128 | |
| 1129 | #ifdef CONFIG_CGROUP_PERF |
| 1130 | struct perf_cgroup *cgrp; |
| 1131 | #endif |
| 1132 | |
| 1133 | /* |
| 1134 | * Per-CPU storage for iterators used in visit_groups_merge. The default |
| 1135 | * storage is of size 2 to hold the CPU and any CPU event iterators. |
| 1136 | */ |
| 1137 | int heap_size; |
| 1138 | struct perf_event **heap; |
| 1139 | struct perf_event *heap_default[2]; |
| 1140 | }; |
| 1141 | |
| 1142 | struct perf_output_handle { |
| 1143 | struct perf_event *event; |
| 1144 | struct perf_buffer *rb; |
| 1145 | unsigned long wakeup; |
| 1146 | unsigned long size; |
| 1147 | union { |
| 1148 | u64 flags; /* perf_output*() */ |
| 1149 | u64 aux_flags; /* perf_aux_output*() */ |
| 1150 | struct { |
| 1151 | u64 skip_read : 1; |
| 1152 | }; |
| 1153 | }; |
| 1154 | union { |
| 1155 | void *addr; |
| 1156 | unsigned long head; |
| 1157 | }; |
| 1158 | int page; |
| 1159 | }; |
| 1160 | |
| 1161 | struct bpf_perf_event_data_kern { |
| 1162 | bpf_user_pt_regs_t *regs; |
| 1163 | struct perf_sample_data *data; |
| 1164 | struct perf_event *event; |
| 1165 | }; |
| 1166 | |
| 1167 | #ifdef CONFIG_CGROUP_PERF |
| 1168 | |
| 1169 | /* |
| 1170 | * perf_cgroup_info keeps track of time_enabled for a cgroup. |
| 1171 | * This is a per-cpu dynamically allocated data structure. |
| 1172 | */ |
| 1173 | struct perf_cgroup_info { |
| 1174 | u64 time; |
| 1175 | u64 timestamp; |
| 1176 | u64 timeoffset; |
| 1177 | int active; |
| 1178 | }; |
| 1179 | |
| 1180 | struct perf_cgroup { |
| 1181 | struct cgroup_subsys_state css; |
| 1182 | struct perf_cgroup_info __percpu *info; |
| 1183 | }; |
| 1184 | |
| 1185 | /* |
| 1186 | * Must ensure cgroup is pinned (css_get) before calling |
| 1187 | * this function. In other words, we cannot call this function |
| 1188 | * if there is no cgroup event for the current CPU context. |
| 1189 | */ |
| 1190 | static inline struct perf_cgroup * |
| 1191 | perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) |
| 1192 | { |
| 1193 | return container_of(task_css_check(task, perf_event_cgrp_id, |
| 1194 | ctx ? lockdep_is_held(&ctx->lock) |
| 1195 | : true), |
| 1196 | struct perf_cgroup, css); |
| 1197 | } |
| 1198 | #endif /* CONFIG_CGROUP_PERF */ |
| 1199 | |
| 1200 | #ifdef CONFIG_PERF_EVENTS |
| 1201 | |
| 1202 | extern struct perf_event_context *perf_cpu_task_ctx(void); |
| 1203 | |
| 1204 | extern void *perf_aux_output_begin(struct perf_output_handle *handle, |
| 1205 | struct perf_event *event); |
| 1206 | extern void perf_aux_output_end(struct perf_output_handle *handle, |
| 1207 | unsigned long size); |
| 1208 | extern int perf_aux_output_skip(struct perf_output_handle *handle, |
| 1209 | unsigned long size); |
| 1210 | extern void *perf_get_aux(struct perf_output_handle *handle); |
| 1211 | extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); |
| 1212 | extern void perf_event_itrace_started(struct perf_event *event); |
| 1213 | |
| 1214 | extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); |
| 1215 | extern int perf_pmu_unregister(struct pmu *pmu); |
| 1216 | |
| 1217 | extern void __perf_event_task_sched_in(struct task_struct *prev, |
| 1218 | struct task_struct *task); |
| 1219 | extern void __perf_event_task_sched_out(struct task_struct *prev, |
| 1220 | struct task_struct *next); |
| 1221 | extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); |
| 1222 | extern void perf_event_exit_task(struct task_struct *child); |
| 1223 | extern void perf_event_free_task(struct task_struct *task); |
| 1224 | extern void perf_event_delayed_put(struct task_struct *task); |
| 1225 | extern struct file *perf_event_get(unsigned int fd); |
| 1226 | extern const struct perf_event *perf_get_event(struct file *file); |
| 1227 | extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); |
| 1228 | extern void perf_event_print_debug(void); |
| 1229 | extern void perf_pmu_disable(struct pmu *pmu); |
| 1230 | extern void perf_pmu_enable(struct pmu *pmu); |
| 1231 | extern void perf_sched_cb_dec(struct pmu *pmu); |
| 1232 | extern void perf_sched_cb_inc(struct pmu *pmu); |
| 1233 | extern int perf_event_task_disable(void); |
| 1234 | extern int perf_event_task_enable(void); |
| 1235 | |
| 1236 | extern void perf_pmu_resched(struct pmu *pmu); |
| 1237 | |
| 1238 | extern int perf_event_refresh(struct perf_event *event, int refresh); |
| 1239 | extern void perf_event_update_userpage(struct perf_event *event); |
| 1240 | extern int perf_event_release_kernel(struct perf_event *event); |
| 1241 | |
| 1242 | extern struct perf_event * |
| 1243 | perf_event_create_kernel_counter(struct perf_event_attr *attr, |
| 1244 | int cpu, |
| 1245 | struct task_struct *task, |
| 1246 | perf_overflow_handler_t callback, |
| 1247 | void *context); |
| 1248 | |
| 1249 | extern void perf_pmu_migrate_context(struct pmu *pmu, |
| 1250 | int src_cpu, int dst_cpu); |
| 1251 | extern int perf_event_read_local(struct perf_event *event, u64 *value, |
| 1252 | u64 *enabled, u64 *running); |
| 1253 | extern u64 perf_event_read_value(struct perf_event *event, |
| 1254 | u64 *enabled, u64 *running); |
| 1255 | |
| 1256 | extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); |
| 1257 | |
| 1258 | static inline bool branch_sample_no_flags(const struct perf_event *event) |
| 1259 | { |
| 1260 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; |
| 1261 | } |
| 1262 | |
| 1263 | static inline bool branch_sample_no_cycles(const struct perf_event *event) |
| 1264 | { |
| 1265 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; |
| 1266 | } |
| 1267 | |
| 1268 | static inline bool branch_sample_type(const struct perf_event *event) |
| 1269 | { |
| 1270 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; |
| 1271 | } |
| 1272 | |
| 1273 | static inline bool branch_sample_hw_index(const struct perf_event *event) |
| 1274 | { |
| 1275 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; |
| 1276 | } |
| 1277 | |
| 1278 | static inline bool branch_sample_priv(const struct perf_event *event) |
| 1279 | { |
| 1280 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; |
| 1281 | } |
| 1282 | |
| 1283 | static inline bool branch_sample_counters(const struct perf_event *event) |
| 1284 | { |
| 1285 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; |
| 1286 | } |
| 1287 | |
| 1288 | static inline bool branch_sample_call_stack(const struct perf_event *event) |
| 1289 | { |
| 1290 | return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; |
| 1291 | } |
| 1292 | |
| 1293 | struct perf_sample_data { |
| 1294 | /* |
| 1295 | * Fields set by perf_sample_data_init() unconditionally, |
| 1296 | * group so as to minimize the cachelines touched. |
| 1297 | */ |
| 1298 | u64 sample_flags; |
| 1299 | u64 period; |
| 1300 | u64 dyn_size; |
| 1301 | |
| 1302 | /* |
| 1303 | * Fields commonly set by __perf_event_header__init_id(), |
| 1304 | * group so as to minimize the cachelines touched. |
| 1305 | */ |
| 1306 | u64 type; |
| 1307 | struct { |
| 1308 | u32 pid; |
| 1309 | u32 tid; |
| 1310 | } tid_entry; |
| 1311 | u64 time; |
| 1312 | u64 id; |
| 1313 | struct { |
| 1314 | u32 cpu; |
| 1315 | u32 reserved; |
| 1316 | } cpu_entry; |
| 1317 | |
| 1318 | /* |
| 1319 | * The other fields, optionally {set,used} by |
| 1320 | * perf_{prepare,output}_sample(). |
| 1321 | */ |
| 1322 | u64 ip; |
| 1323 | struct perf_callchain_entry *callchain; |
| 1324 | struct perf_raw_record *raw; |
| 1325 | struct perf_branch_stack *br_stack; |
| 1326 | u64 *br_stack_cntr; |
| 1327 | union perf_sample_weight weight; |
| 1328 | union perf_mem_data_src data_src; |
| 1329 | u64 txn; |
| 1330 | |
| 1331 | struct perf_regs regs_user; |
| 1332 | struct perf_regs regs_intr; |
| 1333 | u64 stack_user_size; |
| 1334 | |
| 1335 | u64 stream_id; |
| 1336 | u64 cgroup; |
| 1337 | u64 addr; |
| 1338 | u64 phys_addr; |
| 1339 | u64 data_page_size; |
| 1340 | u64 code_page_size; |
| 1341 | u64 aux_size; |
| 1342 | } ____cacheline_aligned; |
| 1343 | |
| 1344 | /* default value for data source */ |
| 1345 | #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ |
| 1346 | PERF_MEM_S(LVL, NA) |\ |
| 1347 | PERF_MEM_S(SNOOP, NA) |\ |
| 1348 | PERF_MEM_S(LOCK, NA) |\ |
| 1349 | PERF_MEM_S(TLB, NA) |\ |
| 1350 | PERF_MEM_S(LVLNUM, NA)) |
| 1351 | |
| 1352 | static inline void perf_sample_data_init(struct perf_sample_data *data, |
| 1353 | u64 addr, u64 period) |
| 1354 | { |
| 1355 | /* remaining struct members initialized in perf_prepare_sample() */ |
| 1356 | data->sample_flags = PERF_SAMPLE_PERIOD; |
| 1357 | data->period = period; |
| 1358 | data->dyn_size = 0; |
| 1359 | |
| 1360 | if (addr) { |
| 1361 | data->addr = addr; |
| 1362 | data->sample_flags |= PERF_SAMPLE_ADDR; |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | static inline void perf_sample_save_callchain(struct perf_sample_data *data, |
| 1367 | struct perf_event *event, |
| 1368 | struct pt_regs *regs) |
| 1369 | { |
| 1370 | int size = 1; |
| 1371 | |
| 1372 | if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) |
| 1373 | return; |
| 1374 | if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) |
| 1375 | return; |
| 1376 | |
| 1377 | data->callchain = perf_callchain(event, regs); |
| 1378 | size += data->callchain->nr; |
| 1379 | |
| 1380 | data->dyn_size += size * sizeof(u64); |
| 1381 | data->sample_flags |= PERF_SAMPLE_CALLCHAIN; |
| 1382 | } |
| 1383 | |
| 1384 | static inline void perf_sample_save_raw_data(struct perf_sample_data *data, |
| 1385 | struct perf_event *event, |
| 1386 | struct perf_raw_record *raw) |
| 1387 | { |
| 1388 | struct perf_raw_frag *frag = &raw->frag; |
| 1389 | u32 sum = 0; |
| 1390 | int size; |
| 1391 | |
| 1392 | if (!(event->attr.sample_type & PERF_SAMPLE_RAW)) |
| 1393 | return; |
| 1394 | if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW)) |
| 1395 | return; |
| 1396 | |
| 1397 | do { |
| 1398 | sum += frag->size; |
| 1399 | if (perf_raw_frag_last(frag)) |
| 1400 | break; |
| 1401 | frag = frag->next; |
| 1402 | } while (1); |
| 1403 | |
| 1404 | size = round_up(sum + sizeof(u32), sizeof(u64)); |
| 1405 | raw->size = size - sizeof(u32); |
| 1406 | frag->pad = raw->size - sum; |
| 1407 | |
| 1408 | data->raw = raw; |
| 1409 | data->dyn_size += size; |
| 1410 | data->sample_flags |= PERF_SAMPLE_RAW; |
| 1411 | } |
| 1412 | |
| 1413 | static inline bool has_branch_stack(struct perf_event *event) |
| 1414 | { |
| 1415 | return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; |
| 1416 | } |
| 1417 | |
| 1418 | static inline void perf_sample_save_brstack(struct perf_sample_data *data, |
| 1419 | struct perf_event *event, |
| 1420 | struct perf_branch_stack *brs, |
| 1421 | u64 *brs_cntr) |
| 1422 | { |
| 1423 | int size = sizeof(u64); /* nr */ |
| 1424 | |
| 1425 | if (!has_branch_stack(event)) |
| 1426 | return; |
| 1427 | if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK)) |
| 1428 | return; |
| 1429 | |
| 1430 | if (branch_sample_hw_index(event)) |
| 1431 | size += sizeof(u64); |
| 1432 | |
| 1433 | brs->nr = min_t(u16, event->attr.sample_max_stack, brs->nr); |
| 1434 | |
| 1435 | size += brs->nr * sizeof(struct perf_branch_entry); |
| 1436 | |
| 1437 | /* |
| 1438 | * The extension space for counters is appended after the |
| 1439 | * struct perf_branch_stack. It is used to store the occurrences |
| 1440 | * of events of each branch. |
| 1441 | */ |
| 1442 | if (brs_cntr) |
| 1443 | size += brs->nr * sizeof(u64); |
| 1444 | |
| 1445 | data->br_stack = brs; |
| 1446 | data->br_stack_cntr = brs_cntr; |
| 1447 | data->dyn_size += size; |
| 1448 | data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; |
| 1449 | } |
| 1450 | |
| 1451 | static inline u32 perf_sample_data_size(struct perf_sample_data *data, |
| 1452 | struct perf_event *event) |
| 1453 | { |
| 1454 | u32 size = sizeof(struct perf_event_header); |
| 1455 | |
| 1456 | size += event->header_size + event->id_header_size; |
| 1457 | size += data->dyn_size; |
| 1458 | |
| 1459 | return size; |
| 1460 | } |
| 1461 | |
| 1462 | /* |
| 1463 | * Clear all bitfields in the perf_branch_entry. |
| 1464 | * The to and from fields are not cleared because they are |
| 1465 | * systematically modified by caller. |
| 1466 | */ |
| 1467 | static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) |
| 1468 | { |
| 1469 | br->mispred = 0; |
| 1470 | br->predicted = 0; |
| 1471 | br->in_tx = 0; |
| 1472 | br->abort = 0; |
| 1473 | br->cycles = 0; |
| 1474 | br->type = 0; |
| 1475 | br->spec = PERF_BR_SPEC_NA; |
| 1476 | br->reserved = 0; |
| 1477 | } |
| 1478 | |
| 1479 | extern void perf_output_sample(struct perf_output_handle *handle, |
| 1480 | struct perf_event_header *, |
| 1481 | struct perf_sample_data *data, |
| 1482 | struct perf_event *event); |
| 1483 | extern void perf_prepare_sample(struct perf_sample_data *data, |
| 1484 | struct perf_event *event, |
| 1485 | struct pt_regs *regs); |
| 1486 | extern void (struct perf_event_header *, |
| 1487 | struct perf_sample_data *data, |
| 1488 | struct perf_event *event, |
| 1489 | struct pt_regs *regs); |
| 1490 | |
| 1491 | extern int perf_event_overflow(struct perf_event *event, |
| 1492 | struct perf_sample_data *data, |
| 1493 | struct pt_regs *regs); |
| 1494 | |
| 1495 | extern void perf_event_output_forward(struct perf_event *event, |
| 1496 | struct perf_sample_data *data, |
| 1497 | struct pt_regs *regs); |
| 1498 | extern void perf_event_output_backward(struct perf_event *event, |
| 1499 | struct perf_sample_data *data, |
| 1500 | struct pt_regs *regs); |
| 1501 | extern int perf_event_output(struct perf_event *event, |
| 1502 | struct perf_sample_data *data, |
| 1503 | struct pt_regs *regs); |
| 1504 | |
| 1505 | static inline bool |
| 1506 | is_default_overflow_handler(struct perf_event *event) |
| 1507 | { |
| 1508 | perf_overflow_handler_t overflow_handler = event->overflow_handler; |
| 1509 | |
| 1510 | if (likely(overflow_handler == perf_event_output_forward)) |
| 1511 | return true; |
| 1512 | if (unlikely(overflow_handler == perf_event_output_backward)) |
| 1513 | return true; |
| 1514 | return false; |
| 1515 | } |
| 1516 | |
| 1517 | extern void |
| 1518 | (struct perf_event_header *, |
| 1519 | struct perf_sample_data *data, |
| 1520 | struct perf_event *event); |
| 1521 | extern void |
| 1522 | perf_event__output_id_sample(struct perf_event *event, |
| 1523 | struct perf_output_handle *handle, |
| 1524 | struct perf_sample_data *sample); |
| 1525 | |
| 1526 | extern void |
| 1527 | perf_log_lost_samples(struct perf_event *event, u64 lost); |
| 1528 | |
| 1529 | static inline bool event_has_any_exclude_flag(struct perf_event *event) |
| 1530 | { |
| 1531 | struct perf_event_attr *attr = &event->attr; |
| 1532 | |
| 1533 | return attr->exclude_idle || attr->exclude_user || |
| 1534 | attr->exclude_kernel || attr->exclude_hv || |
| 1535 | attr->exclude_guest || attr->exclude_host; |
| 1536 | } |
| 1537 | |
| 1538 | static inline bool is_sampling_event(struct perf_event *event) |
| 1539 | { |
| 1540 | return event->attr.sample_period != 0; |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * Return 1 for a software event, 0 for a hardware event |
| 1545 | */ |
| 1546 | static inline int is_software_event(struct perf_event *event) |
| 1547 | { |
| 1548 | return event->event_caps & PERF_EV_CAP_SOFTWARE; |
| 1549 | } |
| 1550 | |
| 1551 | /* |
| 1552 | * Return 1 for event in sw context, 0 for event in hw context |
| 1553 | */ |
| 1554 | static inline int in_software_context(struct perf_event *event) |
| 1555 | { |
| 1556 | return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; |
| 1557 | } |
| 1558 | |
| 1559 | static inline int is_exclusive_pmu(struct pmu *pmu) |
| 1560 | { |
| 1561 | return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; |
| 1562 | } |
| 1563 | |
| 1564 | extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
| 1565 | |
| 1566 | extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); |
| 1567 | extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); |
| 1568 | |
| 1569 | #ifndef perf_arch_fetch_caller_regs |
| 1570 | static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } |
| 1571 | #endif |
| 1572 | |
| 1573 | /* |
| 1574 | * When generating a perf sample in-line, instead of from an interrupt / |
| 1575 | * exception, we lack a pt_regs. This is typically used from software events |
| 1576 | * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. |
| 1577 | * |
| 1578 | * We typically don't need a full set, but (for x86) do require: |
| 1579 | * - ip for PERF_SAMPLE_IP |
| 1580 | * - cs for user_mode() tests |
| 1581 | * - sp for PERF_SAMPLE_CALLCHAIN |
| 1582 | * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) |
| 1583 | * |
| 1584 | * NOTE: assumes @regs is otherwise already 0 filled; this is important for |
| 1585 | * things like PERF_SAMPLE_REGS_INTR. |
| 1586 | */ |
| 1587 | static inline void perf_fetch_caller_regs(struct pt_regs *regs) |
| 1588 | { |
| 1589 | perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); |
| 1590 | } |
| 1591 | |
| 1592 | static __always_inline void |
| 1593 | perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) |
| 1594 | { |
| 1595 | if (static_key_false(key: &perf_swevent_enabled[event_id])) |
| 1596 | __perf_sw_event(event_id, nr, regs, addr); |
| 1597 | } |
| 1598 | |
| 1599 | DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); |
| 1600 | |
| 1601 | /* |
| 1602 | * 'Special' version for the scheduler, it hard assumes no recursion, |
| 1603 | * which is guaranteed by us not actually scheduling inside other swevents |
| 1604 | * because those disable preemption. |
| 1605 | */ |
| 1606 | static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) |
| 1607 | { |
| 1608 | struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); |
| 1609 | |
| 1610 | perf_fetch_caller_regs(regs); |
| 1611 | ___perf_sw_event(event_id, nr, regs, addr); |
| 1612 | } |
| 1613 | |
| 1614 | extern struct static_key_false perf_sched_events; |
| 1615 | |
| 1616 | static __always_inline bool __perf_sw_enabled(int swevt) |
| 1617 | { |
| 1618 | return static_key_false(key: &perf_swevent_enabled[swevt]); |
| 1619 | } |
| 1620 | |
| 1621 | static inline void perf_event_task_migrate(struct task_struct *task) |
| 1622 | { |
| 1623 | if (__perf_sw_enabled(swevt: PERF_COUNT_SW_CPU_MIGRATIONS)) |
| 1624 | task->sched_migrated = 1; |
| 1625 | } |
| 1626 | |
| 1627 | static inline void perf_event_task_sched_in(struct task_struct *prev, |
| 1628 | struct task_struct *task) |
| 1629 | { |
| 1630 | if (static_branch_unlikely(&perf_sched_events)) |
| 1631 | __perf_event_task_sched_in(prev, task); |
| 1632 | |
| 1633 | if (__perf_sw_enabled(swevt: PERF_COUNT_SW_CPU_MIGRATIONS) && |
| 1634 | task->sched_migrated) { |
| 1635 | __perf_sw_event_sched(event_id: PERF_COUNT_SW_CPU_MIGRATIONS, nr: 1, addr: 0); |
| 1636 | task->sched_migrated = 0; |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | static inline void perf_event_task_sched_out(struct task_struct *prev, |
| 1641 | struct task_struct *next) |
| 1642 | { |
| 1643 | if (__perf_sw_enabled(swevt: PERF_COUNT_SW_CONTEXT_SWITCHES)) |
| 1644 | __perf_sw_event_sched(event_id: PERF_COUNT_SW_CONTEXT_SWITCHES, nr: 1, addr: 0); |
| 1645 | |
| 1646 | #ifdef CONFIG_CGROUP_PERF |
| 1647 | if (__perf_sw_enabled(swevt: PERF_COUNT_SW_CGROUP_SWITCHES) && |
| 1648 | perf_cgroup_from_task(task: prev, NULL) != |
| 1649 | perf_cgroup_from_task(task: next, NULL)) |
| 1650 | __perf_sw_event_sched(event_id: PERF_COUNT_SW_CGROUP_SWITCHES, nr: 1, addr: 0); |
| 1651 | #endif |
| 1652 | |
| 1653 | if (static_branch_unlikely(&perf_sched_events)) |
| 1654 | __perf_event_task_sched_out(prev, next); |
| 1655 | } |
| 1656 | |
| 1657 | extern void perf_event_mmap(struct vm_area_struct *vma); |
| 1658 | |
| 1659 | extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, |
| 1660 | bool unregister, const char *sym); |
| 1661 | extern void perf_event_bpf_event(struct bpf_prog *prog, |
| 1662 | enum perf_bpf_event_type type, |
| 1663 | u16 flags); |
| 1664 | |
| 1665 | #define PERF_GUEST_ACTIVE 0x01 |
| 1666 | #define PERF_GUEST_USER 0x02 |
| 1667 | |
| 1668 | struct perf_guest_info_callbacks { |
| 1669 | unsigned int (*state)(void); |
| 1670 | unsigned long (*get_ip)(void); |
| 1671 | unsigned int (*handle_intel_pt_intr)(void); |
| 1672 | }; |
| 1673 | |
| 1674 | #ifdef CONFIG_GUEST_PERF_EVENTS |
| 1675 | |
| 1676 | extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; |
| 1677 | |
| 1678 | DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); |
| 1679 | DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); |
| 1680 | DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); |
| 1681 | |
| 1682 | static inline unsigned int perf_guest_state(void) |
| 1683 | { |
| 1684 | return static_call(__perf_guest_state)(); |
| 1685 | } |
| 1686 | |
| 1687 | static inline unsigned long perf_guest_get_ip(void) |
| 1688 | { |
| 1689 | return static_call(__perf_guest_get_ip)(); |
| 1690 | } |
| 1691 | |
| 1692 | static inline unsigned int perf_guest_handle_intel_pt_intr(void) |
| 1693 | { |
| 1694 | return static_call(__perf_guest_handle_intel_pt_intr)(); |
| 1695 | } |
| 1696 | |
| 1697 | extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); |
| 1698 | extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); |
| 1699 | |
| 1700 | #else /* !CONFIG_GUEST_PERF_EVENTS: */ |
| 1701 | |
| 1702 | static inline unsigned int perf_guest_state(void) { return 0; } |
| 1703 | static inline unsigned long perf_guest_get_ip(void) { return 0; } |
| 1704 | static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } |
| 1705 | |
| 1706 | #endif /* !CONFIG_GUEST_PERF_EVENTS */ |
| 1707 | |
| 1708 | extern void perf_event_exec(void); |
| 1709 | extern void perf_event_comm(struct task_struct *tsk, bool exec); |
| 1710 | extern void perf_event_namespaces(struct task_struct *tsk); |
| 1711 | extern void perf_event_fork(struct task_struct *tsk); |
| 1712 | extern void perf_event_text_poke(const void *addr, |
| 1713 | const void *old_bytes, size_t old_len, |
| 1714 | const void *new_bytes, size_t new_len); |
| 1715 | |
| 1716 | /* Callchains */ |
| 1717 | DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); |
| 1718 | |
| 1719 | extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); |
| 1720 | extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); |
| 1721 | extern struct perf_callchain_entry * |
| 1722 | get_perf_callchain(struct pt_regs *regs, bool kernel, bool user, |
| 1723 | u32 max_stack, bool crosstask, bool add_mark, u64 defer_cookie); |
| 1724 | extern int get_callchain_buffers(int max_stack); |
| 1725 | extern void put_callchain_buffers(void); |
| 1726 | extern struct perf_callchain_entry *get_callchain_entry(int *rctx); |
| 1727 | extern void put_callchain_entry(int rctx); |
| 1728 | |
| 1729 | extern int sysctl_perf_event_max_stack; |
| 1730 | extern int sysctl_perf_event_max_contexts_per_stack; |
| 1731 | |
| 1732 | static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) |
| 1733 | { |
| 1734 | if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { |
| 1735 | struct perf_callchain_entry *entry = ctx->entry; |
| 1736 | |
| 1737 | entry->ip[entry->nr++] = ip; |
| 1738 | ++ctx->contexts; |
| 1739 | return 0; |
| 1740 | } else { |
| 1741 | ctx->contexts_maxed = true; |
| 1742 | return -1; /* no more room, stop walking the stack */ |
| 1743 | } |
| 1744 | } |
| 1745 | |
| 1746 | static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) |
| 1747 | { |
| 1748 | if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { |
| 1749 | struct perf_callchain_entry *entry = ctx->entry; |
| 1750 | |
| 1751 | entry->ip[entry->nr++] = ip; |
| 1752 | ++ctx->nr; |
| 1753 | return 0; |
| 1754 | } else { |
| 1755 | return -1; /* no more room, stop walking the stack */ |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | extern int sysctl_perf_event_paranoid; |
| 1760 | extern int sysctl_perf_event_sample_rate; |
| 1761 | |
| 1762 | extern void perf_sample_event_took(u64 sample_len_ns); |
| 1763 | |
| 1764 | /* Access to perf_event_open(2) syscall. */ |
| 1765 | #define PERF_SECURITY_OPEN 0 |
| 1766 | |
| 1767 | /* Finer grained perf_event_open(2) access control. */ |
| 1768 | #define PERF_SECURITY_CPU 1 |
| 1769 | #define PERF_SECURITY_KERNEL 2 |
| 1770 | #define PERF_SECURITY_TRACEPOINT 3 |
| 1771 | |
| 1772 | static inline int perf_is_paranoid(void) |
| 1773 | { |
| 1774 | return sysctl_perf_event_paranoid > -1; |
| 1775 | } |
| 1776 | |
| 1777 | extern int perf_allow_kernel(void); |
| 1778 | |
| 1779 | static inline int perf_allow_cpu(void) |
| 1780 | { |
| 1781 | if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) |
| 1782 | return -EACCES; |
| 1783 | |
| 1784 | return security_perf_event_open(PERF_SECURITY_CPU); |
| 1785 | } |
| 1786 | |
| 1787 | static inline int perf_allow_tracepoint(void) |
| 1788 | { |
| 1789 | if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) |
| 1790 | return -EPERM; |
| 1791 | |
| 1792 | return security_perf_event_open(PERF_SECURITY_TRACEPOINT); |
| 1793 | } |
| 1794 | |
| 1795 | extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs); |
| 1796 | |
| 1797 | extern void perf_event_init(void); |
| 1798 | extern void perf_tp_event(u16 event_type, u64 count, void *record, |
| 1799 | int entry_size, struct pt_regs *regs, |
| 1800 | struct hlist_head *head, int rctx, |
| 1801 | struct task_struct *task); |
| 1802 | extern void perf_bp_event(struct perf_event *event, void *data); |
| 1803 | |
| 1804 | extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs); |
| 1805 | extern unsigned long perf_instruction_pointer(struct perf_event *event, |
| 1806 | struct pt_regs *regs); |
| 1807 | |
| 1808 | #ifndef perf_arch_misc_flags |
| 1809 | # define perf_arch_misc_flags(regs) \ |
| 1810 | (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) |
| 1811 | # define perf_arch_instruction_pointer(regs) instruction_pointer(regs) |
| 1812 | #endif |
| 1813 | #ifndef perf_arch_bpf_user_pt_regs |
| 1814 | # define perf_arch_bpf_user_pt_regs(regs) regs |
| 1815 | #endif |
| 1816 | |
| 1817 | #ifndef perf_arch_guest_misc_flags |
| 1818 | static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) |
| 1819 | { |
| 1820 | unsigned long guest_state = perf_guest_state(); |
| 1821 | |
| 1822 | if (!(guest_state & PERF_GUEST_ACTIVE)) |
| 1823 | return 0; |
| 1824 | |
| 1825 | if (guest_state & PERF_GUEST_USER) |
| 1826 | return PERF_RECORD_MISC_GUEST_USER; |
| 1827 | else |
| 1828 | return PERF_RECORD_MISC_GUEST_KERNEL; |
| 1829 | } |
| 1830 | # define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs) |
| 1831 | #endif |
| 1832 | |
| 1833 | static inline bool needs_branch_stack(struct perf_event *event) |
| 1834 | { |
| 1835 | return event->attr.branch_sample_type != 0; |
| 1836 | } |
| 1837 | |
| 1838 | static inline bool has_aux(struct perf_event *event) |
| 1839 | { |
| 1840 | return event->pmu && event->pmu->setup_aux; |
| 1841 | } |
| 1842 | |
| 1843 | static inline bool has_aux_action(struct perf_event *event) |
| 1844 | { |
| 1845 | return event->attr.aux_sample_size || |
| 1846 | event->attr.aux_pause || |
| 1847 | event->attr.aux_resume; |
| 1848 | } |
| 1849 | |
| 1850 | static inline bool is_write_backward(struct perf_event *event) |
| 1851 | { |
| 1852 | return !!event->attr.write_backward; |
| 1853 | } |
| 1854 | |
| 1855 | static inline bool has_addr_filter(struct perf_event *event) |
| 1856 | { |
| 1857 | return event->pmu->nr_addr_filters; |
| 1858 | } |
| 1859 | |
| 1860 | /* |
| 1861 | * An inherited event uses parent's filters |
| 1862 | */ |
| 1863 | static inline struct perf_addr_filters_head * |
| 1864 | perf_event_addr_filters(struct perf_event *event) |
| 1865 | { |
| 1866 | struct perf_addr_filters_head *ifh = &event->addr_filters; |
| 1867 | |
| 1868 | if (event->parent) |
| 1869 | ifh = &event->parent->addr_filters; |
| 1870 | |
| 1871 | return ifh; |
| 1872 | } |
| 1873 | |
| 1874 | static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) |
| 1875 | { |
| 1876 | /* Only the parent has fasync state */ |
| 1877 | if (event->parent) |
| 1878 | event = event->parent; |
| 1879 | return &event->fasync; |
| 1880 | } |
| 1881 | |
| 1882 | extern void perf_event_addr_filters_sync(struct perf_event *event); |
| 1883 | extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); |
| 1884 | |
| 1885 | extern int perf_output_begin(struct perf_output_handle *handle, |
| 1886 | struct perf_sample_data *data, |
| 1887 | struct perf_event *event, unsigned int size); |
| 1888 | extern int perf_output_begin_forward(struct perf_output_handle *handle, |
| 1889 | struct perf_sample_data *data, |
| 1890 | struct perf_event *event, |
| 1891 | unsigned int size); |
| 1892 | extern int perf_output_begin_backward(struct perf_output_handle *handle, |
| 1893 | struct perf_sample_data *data, |
| 1894 | struct perf_event *event, |
| 1895 | unsigned int size); |
| 1896 | |
| 1897 | extern void perf_output_end(struct perf_output_handle *handle); |
| 1898 | extern unsigned int perf_output_copy(struct perf_output_handle *handle, |
| 1899 | const void *buf, unsigned int len); |
| 1900 | extern unsigned int perf_output_skip(struct perf_output_handle *handle, |
| 1901 | unsigned int len); |
| 1902 | extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, |
| 1903 | struct perf_output_handle *handle, |
| 1904 | unsigned long from, unsigned long to); |
| 1905 | extern int perf_swevent_get_recursion_context(void); |
| 1906 | extern void perf_swevent_put_recursion_context(int rctx); |
| 1907 | extern u64 perf_swevent_set_period(struct perf_event *event); |
| 1908 | extern void perf_event_enable(struct perf_event *event); |
| 1909 | extern void perf_event_disable(struct perf_event *event); |
| 1910 | extern void perf_event_disable_local(struct perf_event *event); |
| 1911 | extern void perf_event_disable_inatomic(struct perf_event *event); |
| 1912 | extern void perf_event_task_tick(void); |
| 1913 | extern int perf_event_account_interrupt(struct perf_event *event); |
| 1914 | extern int perf_event_period(struct perf_event *event, u64 value); |
| 1915 | extern u64 perf_event_pause(struct perf_event *event, bool reset); |
| 1916 | |
| 1917 | #else /* !CONFIG_PERF_EVENTS: */ |
| 1918 | |
| 1919 | static inline void * |
| 1920 | perf_aux_output_begin(struct perf_output_handle *handle, |
| 1921 | struct perf_event *event) { return NULL; } |
| 1922 | static inline void |
| 1923 | perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) |
| 1924 | { } |
| 1925 | static inline int |
| 1926 | perf_aux_output_skip(struct perf_output_handle *handle, |
| 1927 | unsigned long size) { return -EINVAL; } |
| 1928 | static inline void * |
| 1929 | perf_get_aux(struct perf_output_handle *handle) { return NULL; } |
| 1930 | static inline void |
| 1931 | perf_event_task_migrate(struct task_struct *task) { } |
| 1932 | static inline void |
| 1933 | perf_event_task_sched_in(struct task_struct *prev, |
| 1934 | struct task_struct *task) { } |
| 1935 | static inline void |
| 1936 | perf_event_task_sched_out(struct task_struct *prev, |
| 1937 | struct task_struct *next) { } |
| 1938 | static inline int perf_event_init_task(struct task_struct *child, |
| 1939 | u64 clone_flags) { return 0; } |
| 1940 | static inline void perf_event_exit_task(struct task_struct *child) { } |
| 1941 | static inline void perf_event_free_task(struct task_struct *task) { } |
| 1942 | static inline void perf_event_delayed_put(struct task_struct *task) { } |
| 1943 | static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } |
| 1944 | static inline const struct perf_event *perf_get_event(struct file *file) |
| 1945 | { |
| 1946 | return ERR_PTR(-EINVAL); |
| 1947 | } |
| 1948 | static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) |
| 1949 | { |
| 1950 | return ERR_PTR(-EINVAL); |
| 1951 | } |
| 1952 | static inline int perf_event_read_local(struct perf_event *event, u64 *value, |
| 1953 | u64 *enabled, u64 *running) |
| 1954 | { |
| 1955 | return -EINVAL; |
| 1956 | } |
| 1957 | static inline void perf_event_print_debug(void) { } |
| 1958 | static inline int perf_event_task_disable(void) { return -EINVAL; } |
| 1959 | static inline int perf_event_task_enable(void) { return -EINVAL; } |
| 1960 | static inline int perf_event_refresh(struct perf_event *event, int refresh) |
| 1961 | { |
| 1962 | return -EINVAL; |
| 1963 | } |
| 1964 | |
| 1965 | static inline void |
| 1966 | perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } |
| 1967 | static inline void |
| 1968 | perf_bp_event(struct perf_event *event, void *data) { } |
| 1969 | |
| 1970 | static inline void perf_event_mmap(struct vm_area_struct *vma) { } |
| 1971 | |
| 1972 | typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); |
| 1973 | static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, |
| 1974 | bool unregister, const char *sym) { } |
| 1975 | static inline void perf_event_bpf_event(struct bpf_prog *prog, |
| 1976 | enum perf_bpf_event_type type, |
| 1977 | u16 flags) { } |
| 1978 | static inline void perf_event_exec(void) { } |
| 1979 | static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } |
| 1980 | static inline void perf_event_namespaces(struct task_struct *tsk) { } |
| 1981 | static inline void perf_event_fork(struct task_struct *tsk) { } |
| 1982 | static inline void perf_event_text_poke(const void *addr, |
| 1983 | const void *old_bytes, |
| 1984 | size_t old_len, |
| 1985 | const void *new_bytes, |
| 1986 | size_t new_len) { } |
| 1987 | static inline void perf_event_init(void) { } |
| 1988 | static inline int perf_swevent_get_recursion_context(void) { return -1; } |
| 1989 | static inline void perf_swevent_put_recursion_context(int rctx) { } |
| 1990 | static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } |
| 1991 | static inline void perf_event_enable(struct perf_event *event) { } |
| 1992 | static inline void perf_event_disable(struct perf_event *event) { } |
| 1993 | static inline int __perf_event_disable(void *info) { return -1; } |
| 1994 | static inline void perf_event_task_tick(void) { } |
| 1995 | static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } |
| 1996 | static inline int |
| 1997 | perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } |
| 1998 | static inline u64 |
| 1999 | perf_event_pause(struct perf_event *event, bool reset) { return 0; } |
| 2000 | static inline int |
| 2001 | perf_exclude_event(struct perf_event *event, struct pt_regs *regs) { return 0; } |
| 2002 | |
| 2003 | #endif /* !CONFIG_PERF_EVENTS */ |
| 2004 | |
| 2005 | #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) |
| 2006 | extern void perf_restore_debug_store(void); |
| 2007 | #else |
| 2008 | static inline void perf_restore_debug_store(void) { } |
| 2009 | #endif |
| 2010 | |
| 2011 | #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) |
| 2012 | |
| 2013 | struct perf_pmu_events_attr { |
| 2014 | struct device_attribute attr; |
| 2015 | u64 id; |
| 2016 | const char *event_str; |
| 2017 | }; |
| 2018 | |
| 2019 | struct perf_pmu_events_ht_attr { |
| 2020 | struct device_attribute attr; |
| 2021 | u64 id; |
| 2022 | const char *event_str_ht; |
| 2023 | const char *event_str_noht; |
| 2024 | }; |
| 2025 | |
| 2026 | struct perf_pmu_events_hybrid_attr { |
| 2027 | struct device_attribute attr; |
| 2028 | u64 id; |
| 2029 | const char *event_str; |
| 2030 | u64 pmu_type; |
| 2031 | }; |
| 2032 | |
| 2033 | struct perf_pmu_format_hybrid_attr { |
| 2034 | struct device_attribute attr; |
| 2035 | u64 pmu_type; |
| 2036 | }; |
| 2037 | |
| 2038 | ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, |
| 2039 | char *page); |
| 2040 | |
| 2041 | #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ |
| 2042 | static struct perf_pmu_events_attr _var = { \ |
| 2043 | .attr = __ATTR(_name, 0444, _show, NULL), \ |
| 2044 | .id = _id, \ |
| 2045 | }; |
| 2046 | |
| 2047 | #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ |
| 2048 | static struct perf_pmu_events_attr _var = { \ |
| 2049 | .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ |
| 2050 | .id = 0, \ |
| 2051 | .event_str = _str, \ |
| 2052 | }; |
| 2053 | |
| 2054 | #define PMU_EVENT_ATTR_ID(_name, _show, _id) \ |
| 2055 | (&((struct perf_pmu_events_attr[]) { \ |
| 2056 | { .attr = __ATTR(_name, 0444, _show, NULL), \ |
| 2057 | .id = _id, } \ |
| 2058 | })[0].attr.attr) |
| 2059 | |
| 2060 | #define PMU_FORMAT_ATTR_SHOW(_name, _format) \ |
| 2061 | static ssize_t \ |
| 2062 | _name##_show(struct device *dev, \ |
| 2063 | struct device_attribute *attr, \ |
| 2064 | char *page) \ |
| 2065 | { \ |
| 2066 | BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ |
| 2067 | return sprintf(page, _format "\n"); \ |
| 2068 | } \ |
| 2069 | |
| 2070 | #define PMU_FORMAT_ATTR(_name, _format) \ |
| 2071 | PMU_FORMAT_ATTR_SHOW(_name, _format) \ |
| 2072 | \ |
| 2073 | static struct device_attribute format_attr_##_name = __ATTR_RO(_name) |
| 2074 | |
| 2075 | /* Performance counter hotplug functions */ |
| 2076 | #ifdef CONFIG_PERF_EVENTS |
| 2077 | extern int perf_event_init_cpu(unsigned int cpu); |
| 2078 | extern int perf_event_exit_cpu(unsigned int cpu); |
| 2079 | #else |
| 2080 | # define perf_event_init_cpu NULL |
| 2081 | # define perf_event_exit_cpu NULL |
| 2082 | #endif |
| 2083 | |
| 2084 | extern void arch_perf_update_userpage(struct perf_event *event, |
| 2085 | struct perf_event_mmap_page *userpg, |
| 2086 | u64 now); |
| 2087 | |
| 2088 | /* |
| 2089 | * Snapshot branch stack on software events. |
| 2090 | * |
| 2091 | * Branch stack can be very useful in understanding software events. For |
| 2092 | * example, when a long function, e.g. sys_perf_event_open, returns an |
| 2093 | * errno, it is not obvious why the function failed. Branch stack could |
| 2094 | * provide very helpful information in this type of scenarios. |
| 2095 | * |
| 2096 | * On software event, it is necessary to stop the hardware branch recorder |
| 2097 | * fast. Otherwise, the hardware register/buffer will be flushed with |
| 2098 | * entries of the triggering event. Therefore, static call is used to |
| 2099 | * stop the hardware recorder. |
| 2100 | */ |
| 2101 | |
| 2102 | /* |
| 2103 | * cnt is the number of entries allocated for entries. |
| 2104 | * Return number of entries copied to . |
| 2105 | */ |
| 2106 | typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, |
| 2107 | unsigned int cnt); |
| 2108 | DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); |
| 2109 | |
| 2110 | #ifndef PERF_NEEDS_LOPWR_CB |
| 2111 | static inline void perf_lopwr_cb(bool mode) |
| 2112 | { |
| 2113 | } |
| 2114 | #endif |
| 2115 | |
| 2116 | #endif /* _LINUX_PERF_EVENT_H */ |
| 2117 | |