| 1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| 2 | /* |
| 3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 4 | * operating system. INET is implemented using the BSD Socket |
| 5 | * interface as the means of communication with the user level. |
| 6 | * |
| 7 | * Definitions for the AF_INET socket handler. |
| 8 | * |
| 9 | * Version: @(#)sock.h 1.0.4 05/13/93 |
| 10 | * |
| 11 | * Authors: Ross Biro |
| 12 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| 14 | * Florian La Roche <flla@stud.uni-sb.de> |
| 15 | * |
| 16 | * Fixes: |
| 17 | * Alan Cox : Volatiles in skbuff pointers. See |
| 18 | * skbuff comments. May be overdone, |
| 19 | * better to prove they can be removed |
| 20 | * than the reverse. |
| 21 | * Alan Cox : Added a zapped field for tcp to note |
| 22 | * a socket is reset and must stay shut up |
| 23 | * Alan Cox : New fields for options |
| 24 | * Pauline Middelink : identd support |
| 25 | * Alan Cox : Eliminate low level recv/recvfrom |
| 26 | * David S. Miller : New socket lookup architecture. |
| 27 | * Steve Whitehouse: Default routines for sock_ops |
| 28 | * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made |
| 29 | * protinfo be just a void pointer, as the |
| 30 | * protocol specific parts were moved to |
| 31 | * respective headers and ipv4/v6, etc now |
| 32 | * use private slabcaches for its socks |
| 33 | * Pedro Hortas : New flags field for socket options |
| 34 | */ |
| 35 | #ifndef _SOCK_H |
| 36 | #define _SOCK_H |
| 37 | |
| 38 | #include <linux/hardirq.h> |
| 39 | #include <linux/kernel.h> |
| 40 | #include <linux/list.h> |
| 41 | #include <linux/list_nulls.h> |
| 42 | #include <linux/timer.h> |
| 43 | #include <linux/cache.h> |
| 44 | #include <linux/bitops.h> |
| 45 | #include <linux/lockdep.h> |
| 46 | #include <linux/netdevice.h> |
| 47 | #include <linux/skbuff.h> /* struct sk_buff */ |
| 48 | #include <linux/mm.h> |
| 49 | #include <linux/security.h> |
| 50 | #include <linux/slab.h> |
| 51 | #include <linux/uaccess.h> |
| 52 | #include <linux/page_counter.h> |
| 53 | #include <linux/memcontrol.h> |
| 54 | #include <linux/static_key.h> |
| 55 | #include <linux/sched.h> |
| 56 | #include <linux/wait.h> |
| 57 | #include <linux/cgroup-defs.h> |
| 58 | #include <linux/rbtree.h> |
| 59 | #include <linux/rculist_nulls.h> |
| 60 | #include <linux/poll.h> |
| 61 | #include <linux/sockptr.h> |
| 62 | #include <linux/indirect_call_wrapper.h> |
| 63 | #include <linux/atomic.h> |
| 64 | #include <linux/refcount.h> |
| 65 | #include <linux/llist.h> |
| 66 | #include <net/dst.h> |
| 67 | #include <net/checksum.h> |
| 68 | #include <net/tcp_states.h> |
| 69 | #include <linux/net_tstamp.h> |
| 70 | #include <net/l3mdev.h> |
| 71 | #include <uapi/linux/socket.h> |
| 72 | |
| 73 | /* |
| 74 | * This structure really needs to be cleaned up. |
| 75 | * Most of it is for TCP, and not used by any of |
| 76 | * the other protocols. |
| 77 | */ |
| 78 | |
| 79 | /* This is the per-socket lock. The spinlock provides a synchronization |
| 80 | * between user contexts and software interrupt processing, whereas the |
| 81 | * mini-semaphore synchronizes multiple users amongst themselves. |
| 82 | */ |
| 83 | typedef struct { |
| 84 | spinlock_t slock; |
| 85 | int owned; |
| 86 | wait_queue_head_t wq; |
| 87 | /* |
| 88 | * We express the mutex-alike socket_lock semantics |
| 89 | * to the lock validator by explicitly managing |
| 90 | * the slock as a lock variant (in addition to |
| 91 | * the slock itself): |
| 92 | */ |
| 93 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 94 | struct lockdep_map dep_map; |
| 95 | #endif |
| 96 | } socket_lock_t; |
| 97 | |
| 98 | struct sock; |
| 99 | struct proto; |
| 100 | struct net; |
| 101 | |
| 102 | typedef __u32 __bitwise __portpair; |
| 103 | typedef __u64 __bitwise __addrpair; |
| 104 | |
| 105 | /** |
| 106 | * struct sock_common - minimal network layer representation of sockets |
| 107 | * @skc_daddr: Foreign IPv4 addr |
| 108 | * @skc_rcv_saddr: Bound local IPv4 addr |
| 109 | * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr |
| 110 | * @skc_hash: hash value used with various protocol lookup tables |
| 111 | * @skc_u16hashes: two u16 hash values used by UDP lookup tables |
| 112 | * @skc_dport: placeholder for inet_dport/tw_dport |
| 113 | * @skc_num: placeholder for inet_num/tw_num |
| 114 | * @skc_portpair: __u32 union of @skc_dport & @skc_num |
| 115 | * @skc_family: network address family |
| 116 | * @skc_state: Connection state |
| 117 | * @skc_reuse: %SO_REUSEADDR setting |
| 118 | * @skc_reuseport: %SO_REUSEPORT setting |
| 119 | * @skc_ipv6only: socket is IPV6 only |
| 120 | * @skc_net_refcnt: socket is using net ref counting |
| 121 | * @skc_bypass_prot_mem: bypass the per-protocol memory accounting for skb |
| 122 | * @skc_bound_dev_if: bound device index if != 0 |
| 123 | * @skc_bind_node: bind hash linkage for various protocol lookup tables |
| 124 | * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol |
| 125 | * @skc_prot: protocol handlers inside a network family |
| 126 | * @skc_net: reference to the network namespace of this socket |
| 127 | * @skc_v6_daddr: IPV6 destination address |
| 128 | * @skc_v6_rcv_saddr: IPV6 source address |
| 129 | * @skc_cookie: socket's cookie value |
| 130 | * @skc_node: main hash linkage for various protocol lookup tables |
| 131 | * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol |
| 132 | * @skc_tx_queue_mapping: tx queue number for this connection |
| 133 | * @skc_rx_queue_mapping: rx queue number for this connection |
| 134 | * @skc_flags: place holder for sk_flags |
| 135 | * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, |
| 136 | * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings |
| 137 | * @skc_listener: connection request listener socket (aka rsk_listener) |
| 138 | * [union with @skc_flags] |
| 139 | * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row |
| 140 | * [union with @skc_flags] |
| 141 | * @skc_incoming_cpu: record/match cpu processing incoming packets |
| 142 | * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) |
| 143 | * [union with @skc_incoming_cpu] |
| 144 | * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number |
| 145 | * [union with @skc_incoming_cpu] |
| 146 | * @skc_refcnt: reference count |
| 147 | * |
| 148 | * This is the minimal network layer representation of sockets, the header |
| 149 | * for struct sock and struct inet_timewait_sock. |
| 150 | */ |
| 151 | struct sock_common { |
| 152 | union { |
| 153 | __addrpair skc_addrpair; |
| 154 | struct { |
| 155 | __be32 skc_daddr; |
| 156 | __be32 skc_rcv_saddr; |
| 157 | }; |
| 158 | }; |
| 159 | union { |
| 160 | unsigned int skc_hash; |
| 161 | __u16 skc_u16hashes[2]; |
| 162 | }; |
| 163 | /* skc_dport && skc_num must be grouped as well */ |
| 164 | union { |
| 165 | __portpair skc_portpair; |
| 166 | struct { |
| 167 | __be16 skc_dport; |
| 168 | __u16 skc_num; |
| 169 | }; |
| 170 | }; |
| 171 | |
| 172 | unsigned short skc_family; |
| 173 | volatile unsigned char skc_state; |
| 174 | unsigned char skc_reuse:4; |
| 175 | unsigned char skc_reuseport:1; |
| 176 | unsigned char skc_ipv6only:1; |
| 177 | unsigned char skc_net_refcnt:1; |
| 178 | unsigned char skc_bypass_prot_mem:1; |
| 179 | int skc_bound_dev_if; |
| 180 | union { |
| 181 | struct hlist_node skc_bind_node; |
| 182 | struct hlist_node skc_portaddr_node; |
| 183 | }; |
| 184 | struct proto *skc_prot; |
| 185 | possible_net_t skc_net; |
| 186 | |
| 187 | #if IS_ENABLED(CONFIG_IPV6) |
| 188 | struct in6_addr skc_v6_daddr; |
| 189 | struct in6_addr skc_v6_rcv_saddr; |
| 190 | #endif |
| 191 | |
| 192 | atomic64_t skc_cookie; |
| 193 | |
| 194 | /* following fields are padding to force |
| 195 | * offset(struct sock, sk_refcnt) == 128 on 64bit arches |
| 196 | * assuming IPV6 is enabled. We use this padding differently |
| 197 | * for different kind of 'sockets' |
| 198 | */ |
| 199 | union { |
| 200 | unsigned long skc_flags; |
| 201 | struct sock *skc_listener; /* request_sock */ |
| 202 | struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ |
| 203 | }; |
| 204 | /* |
| 205 | * fields between dontcopy_begin/dontcopy_end |
| 206 | * are not copied in sock_copy() |
| 207 | */ |
| 208 | /* private: */ |
| 209 | int skc_dontcopy_begin[0]; |
| 210 | /* public: */ |
| 211 | union { |
| 212 | struct hlist_node skc_node; |
| 213 | struct hlist_nulls_node skc_nulls_node; |
| 214 | }; |
| 215 | unsigned short skc_tx_queue_mapping; |
| 216 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| 217 | unsigned short skc_rx_queue_mapping; |
| 218 | #endif |
| 219 | union { |
| 220 | int skc_incoming_cpu; |
| 221 | u32 skc_rcv_wnd; |
| 222 | u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ |
| 223 | }; |
| 224 | |
| 225 | refcount_t skc_refcnt; |
| 226 | /* private: */ |
| 227 | int skc_dontcopy_end[0]; |
| 228 | union { |
| 229 | u32 skc_rxhash; |
| 230 | u32 skc_window_clamp; |
| 231 | u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ |
| 232 | }; |
| 233 | /* public: */ |
| 234 | }; |
| 235 | |
| 236 | struct bpf_local_storage; |
| 237 | struct sk_filter; |
| 238 | |
| 239 | /** |
| 240 | * struct sock - network layer representation of sockets |
| 241 | * @__sk_common: shared layout with inet_timewait_sock |
| 242 | * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN |
| 243 | * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings |
| 244 | * @sk_lock: synchronizer |
| 245 | * @sk_kern_sock: True if sock is using kernel lock classes |
| 246 | * @sk_rcvbuf: size of receive buffer in bytes |
| 247 | * @sk_wq: sock wait queue and async head |
| 248 | * @sk_rx_dst: receive input route used by early demux |
| 249 | * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst |
| 250 | * @sk_rx_dst_cookie: cookie for @sk_rx_dst |
| 251 | * @sk_dst_cache: destination cache |
| 252 | * @sk_dst_pending_confirm: need to confirm neighbour |
| 253 | * @sk_policy: flow policy |
| 254 | * @psp_assoc: PSP association, if socket is PSP-secured |
| 255 | * @sk_receive_queue: incoming packets |
| 256 | * @sk_wmem_alloc: transmit queue bytes committed |
| 257 | * @sk_tsq_flags: TCP Small Queues flags |
| 258 | * @sk_write_queue: Packet sending queue |
| 259 | * @sk_omem_alloc: "o" is "option" or "other" |
| 260 | * @sk_wmem_queued: persistent queue size |
| 261 | * @sk_forward_alloc: space allocated forward |
| 262 | * @sk_reserved_mem: space reserved and non-reclaimable for the socket |
| 263 | * @sk_napi_id: id of the last napi context to receive data for sk |
| 264 | * @sk_ll_usec: usecs to busypoll when there is no data |
| 265 | * @sk_allocation: allocation mode |
| 266 | * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) |
| 267 | * @sk_pacing_status: Pacing status (requested, handled by sch_fq) |
| 268 | * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) |
| 269 | * @sk_sndbuf: size of send buffer in bytes |
| 270 | * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets |
| 271 | * @sk_no_check_rx: allow zero checksum in RX packets |
| 272 | * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) |
| 273 | * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. |
| 274 | * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) |
| 275 | * @sk_gso_max_size: Maximum GSO segment size to build |
| 276 | * @sk_gso_max_segs: Maximum number of GSO segments |
| 277 | * @sk_pacing_shift: scaling factor for TCP Small Queues |
| 278 | * @sk_lingertime: %SO_LINGER l_linger setting |
| 279 | * @sk_backlog: always used with the per-socket spinlock held |
| 280 | * @sk_callback_lock: used with the callbacks in the end of this struct |
| 281 | * @sk_error_queue: rarely used |
| 282 | * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, |
| 283 | * IPV6_ADDRFORM for instance) |
| 284 | * @sk_err: last error |
| 285 | * @sk_err_soft: errors that don't cause failure but are the cause of a |
| 286 | * persistent failure not just 'timed out' |
| 287 | * @sk_drops: raw/udp drops counter |
| 288 | * @sk_drop_counters: optional pointer to numa_drop_counters |
| 289 | * @sk_ack_backlog: current listen backlog |
| 290 | * @sk_max_ack_backlog: listen backlog set in listen() |
| 291 | * @sk_uid: user id of owner |
| 292 | * @sk_ino: inode number (zero if orphaned) |
| 293 | * @sk_prefer_busy_poll: prefer busypolling over softirq processing |
| 294 | * @sk_busy_poll_budget: napi processing budget when busypolling |
| 295 | * @sk_priority: %SO_PRIORITY setting |
| 296 | * @sk_type: socket type (%SOCK_STREAM, etc) |
| 297 | * @sk_protocol: which protocol this socket belongs in this network family |
| 298 | * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred |
| 299 | * @sk_peer_pid: &struct pid for this socket's peer |
| 300 | * @sk_peer_cred: %SO_PEERCRED setting |
| 301 | * @sk_rcvlowat: %SO_RCVLOWAT setting |
| 302 | * @sk_rcvtimeo: %SO_RCVTIMEO setting |
| 303 | * @sk_sndtimeo: %SO_SNDTIMEO setting |
| 304 | * @sk_txhash: computed flow hash for use on transmit |
| 305 | * @sk_txrehash: enable TX hash rethink |
| 306 | * @sk_filter: socket filtering instructions |
| 307 | * @sk_timer: sock cleanup timer |
| 308 | * @tcp_retransmit_timer: tcp retransmit timer |
| 309 | * @mptcp_retransmit_timer: mptcp retransmit timer |
| 310 | * @sk_stamp: time stamp of last packet received |
| 311 | * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only |
| 312 | * @sk_tsflags: SO_TIMESTAMPING flags |
| 313 | * @sk_bpf_cb_flags: used in bpf_setsockopt() |
| 314 | * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. |
| 315 | * Sockets that can be used under memory reclaim should |
| 316 | * set this to false. |
| 317 | * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock |
| 318 | * for timestamping |
| 319 | * @sk_tskey: counter to disambiguate concurrent tstamp requests |
| 320 | * @sk_tx_queue_mapping_jiffies: time in jiffies of last @sk_tx_queue_mapping refresh. |
| 321 | * @sk_zckey: counter to order MSG_ZEROCOPY notifications |
| 322 | * @sk_socket: Identd and reporting IO signals |
| 323 | * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. |
| 324 | * @sk_frag: cached page frag |
| 325 | * @sk_peek_off: current peek_offset value |
| 326 | * @sk_send_head: front of stuff to transmit |
| 327 | * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] |
| 328 | * @sk_security: used by security modules |
| 329 | * @sk_mark: generic packet mark |
| 330 | * @sk_cgrp_data: cgroup data for this cgroup |
| 331 | * @sk_memcg: this socket's memory cgroup association |
| 332 | * @sk_write_pending: a write to stream socket waits to start |
| 333 | * @sk_disconnects: number of disconnect operations performed on this sock |
| 334 | * @sk_state_change: callback to indicate change in the state of the sock |
| 335 | * @sk_data_ready: callback to indicate there is data to be processed |
| 336 | * @sk_write_space: callback to indicate there is bf sending space available |
| 337 | * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) |
| 338 | * @sk_backlog_rcv: callback to process the backlog |
| 339 | * @sk_validate_xmit_skb: ptr to an optional validate function |
| 340 | * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 |
| 341 | * @sk_reuseport_cb: reuseport group container |
| 342 | * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage |
| 343 | * @sk_rcu: used during RCU grace period |
| 344 | * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) |
| 345 | * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME |
| 346 | * @sk_txtime_report_errors: set report errors mode for SO_TXTIME |
| 347 | * @sk_txtime_unused: unused txtime flags |
| 348 | * @sk_scm_recv_flags: all flags used by scm_recv() |
| 349 | * @sk_scm_credentials: flagged by SO_PASSCRED to recv SCM_CREDENTIALS |
| 350 | * @sk_scm_security: flagged by SO_PASSSEC to recv SCM_SECURITY |
| 351 | * @sk_scm_pidfd: flagged by SO_PASSPIDFD to recv SCM_PIDFD |
| 352 | * @sk_scm_rights: flagged by SO_PASSRIGHTS to recv SCM_RIGHTS |
| 353 | * @sk_scm_unused: unused flags for scm_recv() |
| 354 | * @ns_tracker: tracker for netns reference |
| 355 | * @sk_user_frags: xarray of pages the user is holding a reference on. |
| 356 | * @sk_owner: reference to the real owner of the socket that calls |
| 357 | * sock_lock_init_class_and_name(). |
| 358 | */ |
| 359 | struct sock { |
| 360 | /* |
| 361 | * Now struct inet_timewait_sock also uses sock_common, so please just |
| 362 | * don't add nothing before this first member (__sk_common) --acme |
| 363 | */ |
| 364 | struct sock_common __sk_common; |
| 365 | #define sk_node __sk_common.skc_node |
| 366 | #define sk_nulls_node __sk_common.skc_nulls_node |
| 367 | #define sk_refcnt __sk_common.skc_refcnt |
| 368 | #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping |
| 369 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| 370 | #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping |
| 371 | #endif |
| 372 | |
| 373 | #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin |
| 374 | #define sk_dontcopy_end __sk_common.skc_dontcopy_end |
| 375 | #define sk_hash __sk_common.skc_hash |
| 376 | #define sk_portpair __sk_common.skc_portpair |
| 377 | #define sk_num __sk_common.skc_num |
| 378 | #define sk_dport __sk_common.skc_dport |
| 379 | #define sk_addrpair __sk_common.skc_addrpair |
| 380 | #define sk_daddr __sk_common.skc_daddr |
| 381 | #define sk_rcv_saddr __sk_common.skc_rcv_saddr |
| 382 | #define sk_family __sk_common.skc_family |
| 383 | #define sk_state __sk_common.skc_state |
| 384 | #define sk_reuse __sk_common.skc_reuse |
| 385 | #define sk_reuseport __sk_common.skc_reuseport |
| 386 | #define sk_ipv6only __sk_common.skc_ipv6only |
| 387 | #define sk_net_refcnt __sk_common.skc_net_refcnt |
| 388 | #define sk_bypass_prot_mem __sk_common.skc_bypass_prot_mem |
| 389 | #define sk_bound_dev_if __sk_common.skc_bound_dev_if |
| 390 | #define sk_bind_node __sk_common.skc_bind_node |
| 391 | #define sk_prot __sk_common.skc_prot |
| 392 | #define sk_net __sk_common.skc_net |
| 393 | #define sk_v6_daddr __sk_common.skc_v6_daddr |
| 394 | #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr |
| 395 | #define sk_cookie __sk_common.skc_cookie |
| 396 | #define sk_incoming_cpu __sk_common.skc_incoming_cpu |
| 397 | #define sk_flags __sk_common.skc_flags |
| 398 | #define sk_rxhash __sk_common.skc_rxhash |
| 399 | |
| 400 | __cacheline_group_begin(sock_write_rx); |
| 401 | |
| 402 | atomic_t sk_drops; |
| 403 | __s32 sk_peek_off; |
| 404 | struct sk_buff_head sk_error_queue; |
| 405 | struct sk_buff_head sk_receive_queue; |
| 406 | /* |
| 407 | * The backlog queue is special, it is always used with |
| 408 | * the per-socket spinlock held and requires low latency |
| 409 | * access. Therefore we special case it's implementation. |
| 410 | * Note : rmem_alloc is in this structure to fill a hole |
| 411 | * on 64bit arches, not because its logically part of |
| 412 | * backlog. |
| 413 | */ |
| 414 | struct { |
| 415 | atomic_t rmem_alloc; |
| 416 | int len; |
| 417 | struct sk_buff *head; |
| 418 | struct sk_buff *tail; |
| 419 | } sk_backlog; |
| 420 | #define sk_rmem_alloc sk_backlog.rmem_alloc |
| 421 | |
| 422 | __cacheline_group_end(sock_write_rx); |
| 423 | |
| 424 | __cacheline_group_begin(sock_read_rx); |
| 425 | /* early demux fields */ |
| 426 | struct dst_entry __rcu *sk_rx_dst; |
| 427 | int sk_rx_dst_ifindex; |
| 428 | u32 sk_rx_dst_cookie; |
| 429 | |
| 430 | #ifdef CONFIG_NET_RX_BUSY_POLL |
| 431 | unsigned int sk_ll_usec; |
| 432 | unsigned int sk_napi_id; |
| 433 | u16 sk_busy_poll_budget; |
| 434 | u8 sk_prefer_busy_poll; |
| 435 | #endif |
| 436 | u8 sk_userlocks; |
| 437 | int sk_rcvbuf; |
| 438 | |
| 439 | struct sk_filter __rcu *sk_filter; |
| 440 | union { |
| 441 | struct socket_wq __rcu *sk_wq; |
| 442 | /* private: */ |
| 443 | struct socket_wq *sk_wq_raw; |
| 444 | /* public: */ |
| 445 | }; |
| 446 | |
| 447 | void (*sk_data_ready)(struct sock *sk); |
| 448 | long sk_rcvtimeo; |
| 449 | int sk_rcvlowat; |
| 450 | __cacheline_group_end(sock_read_rx); |
| 451 | |
| 452 | __cacheline_group_begin(sock_read_rxtx); |
| 453 | int sk_err; |
| 454 | struct socket *sk_socket; |
| 455 | #ifdef CONFIG_MEMCG |
| 456 | struct mem_cgroup *sk_memcg; |
| 457 | #endif |
| 458 | #ifdef CONFIG_XFRM |
| 459 | struct xfrm_policy __rcu *sk_policy[2]; |
| 460 | #endif |
| 461 | #if IS_ENABLED(CONFIG_INET_PSP) |
| 462 | struct psp_assoc __rcu *psp_assoc; |
| 463 | #endif |
| 464 | __cacheline_group_end(sock_read_rxtx); |
| 465 | |
| 466 | __cacheline_group_begin(sock_write_rxtx); |
| 467 | socket_lock_t sk_lock; |
| 468 | u32 sk_reserved_mem; |
| 469 | int sk_forward_alloc; |
| 470 | u32 sk_tsflags; |
| 471 | __cacheline_group_end(sock_write_rxtx); |
| 472 | |
| 473 | __cacheline_group_begin(sock_write_tx); |
| 474 | int sk_write_pending; |
| 475 | atomic_t sk_omem_alloc; |
| 476 | int sk_err_soft; |
| 477 | |
| 478 | int sk_wmem_queued; |
| 479 | refcount_t sk_wmem_alloc; |
| 480 | unsigned long sk_tsq_flags; |
| 481 | union { |
| 482 | struct sk_buff *sk_send_head; |
| 483 | struct rb_root tcp_rtx_queue; |
| 484 | }; |
| 485 | struct sk_buff_head sk_write_queue; |
| 486 | struct page_frag sk_frag; |
| 487 | union { |
| 488 | struct timer_list sk_timer; |
| 489 | struct timer_list tcp_retransmit_timer; |
| 490 | struct timer_list mptcp_retransmit_timer; |
| 491 | }; |
| 492 | unsigned long sk_pacing_rate; /* bytes per second */ |
| 493 | atomic_t sk_zckey; |
| 494 | atomic_t sk_tskey; |
| 495 | unsigned long sk_tx_queue_mapping_jiffies; |
| 496 | __cacheline_group_end(sock_write_tx); |
| 497 | |
| 498 | __cacheline_group_begin(sock_read_tx); |
| 499 | u32 sk_dst_pending_confirm; |
| 500 | u32 sk_pacing_status; /* see enum sk_pacing */ |
| 501 | unsigned long sk_max_pacing_rate; |
| 502 | long sk_sndtimeo; |
| 503 | u32 sk_priority; |
| 504 | u32 sk_mark; |
| 505 | kuid_t sk_uid; |
| 506 | u16 sk_protocol; |
| 507 | u16 sk_type; |
| 508 | struct dst_entry __rcu *sk_dst_cache; |
| 509 | netdev_features_t sk_route_caps; |
| 510 | #ifdef CONFIG_SOCK_VALIDATE_XMIT |
| 511 | struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, |
| 512 | struct net_device *dev, |
| 513 | struct sk_buff *skb); |
| 514 | #endif |
| 515 | u16 sk_gso_type; |
| 516 | u16 sk_gso_max_segs; |
| 517 | unsigned int sk_gso_max_size; |
| 518 | gfp_t sk_allocation; |
| 519 | u32 sk_txhash; |
| 520 | int sk_sndbuf; |
| 521 | u8 sk_pacing_shift; |
| 522 | bool sk_use_task_frag; |
| 523 | __cacheline_group_end(sock_read_tx); |
| 524 | |
| 525 | /* |
| 526 | * Because of non atomicity rules, all |
| 527 | * changes are protected by socket lock. |
| 528 | */ |
| 529 | u8 sk_gso_disabled : 1, |
| 530 | sk_kern_sock : 1, |
| 531 | sk_no_check_tx : 1, |
| 532 | sk_no_check_rx : 1; |
| 533 | u8 sk_shutdown; |
| 534 | unsigned long sk_lingertime; |
| 535 | struct proto *sk_prot_creator; |
| 536 | rwlock_t sk_callback_lock; |
| 537 | u32 sk_ack_backlog; |
| 538 | u32 sk_max_ack_backlog; |
| 539 | unsigned long sk_ino; |
| 540 | spinlock_t sk_peer_lock; |
| 541 | int sk_bind_phc; |
| 542 | struct pid *sk_peer_pid; |
| 543 | const struct cred *sk_peer_cred; |
| 544 | |
| 545 | ktime_t sk_stamp; |
| 546 | #if BITS_PER_LONG==32 |
| 547 | seqlock_t sk_stamp_seq; |
| 548 | #endif |
| 549 | int sk_disconnects; |
| 550 | |
| 551 | union { |
| 552 | u8 sk_txrehash; |
| 553 | u8 sk_scm_recv_flags; |
| 554 | struct { |
| 555 | u8 sk_scm_credentials : 1, |
| 556 | sk_scm_security : 1, |
| 557 | sk_scm_pidfd : 1, |
| 558 | sk_scm_rights : 1, |
| 559 | sk_scm_unused : 4; |
| 560 | }; |
| 561 | }; |
| 562 | u8 sk_clockid; |
| 563 | u8 sk_txtime_deadline_mode : 1, |
| 564 | sk_txtime_report_errors : 1, |
| 565 | sk_txtime_unused : 6; |
| 566 | #define SK_BPF_CB_FLAG_TEST(SK, FLAG) ((SK)->sk_bpf_cb_flags & (FLAG)) |
| 567 | u8 sk_bpf_cb_flags; |
| 568 | |
| 569 | void *sk_user_data; |
| 570 | #ifdef CONFIG_SECURITY |
| 571 | void *sk_security; |
| 572 | #endif |
| 573 | struct sock_cgroup_data sk_cgrp_data; |
| 574 | void (*sk_state_change)(struct sock *sk); |
| 575 | void (*sk_write_space)(struct sock *sk); |
| 576 | void (*sk_error_report)(struct sock *sk); |
| 577 | int (*sk_backlog_rcv)(struct sock *sk, |
| 578 | struct sk_buff *skb); |
| 579 | void (*sk_destruct)(struct sock *sk); |
| 580 | struct sock_reuseport __rcu *sk_reuseport_cb; |
| 581 | #ifdef CONFIG_BPF_SYSCALL |
| 582 | struct bpf_local_storage __rcu *sk_bpf_storage; |
| 583 | #endif |
| 584 | struct numa_drop_counters *sk_drop_counters; |
| 585 | struct rcu_head sk_rcu; |
| 586 | netns_tracker ns_tracker; |
| 587 | struct xarray sk_user_frags; |
| 588 | |
| 589 | #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) |
| 590 | struct module *sk_owner; |
| 591 | #endif |
| 592 | }; |
| 593 | |
| 594 | struct sock_bh_locked { |
| 595 | struct sock *sock; |
| 596 | local_lock_t bh_lock; |
| 597 | }; |
| 598 | |
| 599 | enum sk_pacing { |
| 600 | SK_PACING_NONE = 0, |
| 601 | SK_PACING_NEEDED = 1, |
| 602 | SK_PACING_FQ = 2, |
| 603 | }; |
| 604 | |
| 605 | /* flag bits in sk_user_data |
| 606 | * |
| 607 | * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might |
| 608 | * not be suitable for copying when cloning the socket. For instance, |
| 609 | * it can point to a reference counted object. sk_user_data bottom |
| 610 | * bit is set if pointer must not be copied. |
| 611 | * |
| 612 | * - SK_USER_DATA_BPF: Mark whether sk_user_data field is |
| 613 | * managed/owned by a BPF reuseport array. This bit should be set |
| 614 | * when sk_user_data's sk is added to the bpf's reuseport_array. |
| 615 | * |
| 616 | * - SK_USER_DATA_PSOCK: Mark whether pointer stored in |
| 617 | * sk_user_data points to psock type. This bit should be set |
| 618 | * when sk_user_data is assigned to a psock object. |
| 619 | */ |
| 620 | #define SK_USER_DATA_NOCOPY 1UL |
| 621 | #define SK_USER_DATA_BPF 2UL |
| 622 | #define SK_USER_DATA_PSOCK 4UL |
| 623 | #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ |
| 624 | SK_USER_DATA_PSOCK) |
| 625 | |
| 626 | /** |
| 627 | * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied |
| 628 | * @sk: socket |
| 629 | */ |
| 630 | static inline bool sk_user_data_is_nocopy(const struct sock *sk) |
| 631 | { |
| 632 | return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); |
| 633 | } |
| 634 | |
| 635 | #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) |
| 636 | |
| 637 | /** |
| 638 | * __locked_read_sk_user_data_with_flags - return the pointer |
| 639 | * only if argument flags all has been set in sk_user_data. Otherwise |
| 640 | * return NULL |
| 641 | * |
| 642 | * @sk: socket |
| 643 | * @flags: flag bits |
| 644 | * |
| 645 | * The caller must be holding sk->sk_callback_lock. |
| 646 | */ |
| 647 | static inline void * |
| 648 | __locked_read_sk_user_data_with_flags(const struct sock *sk, |
| 649 | uintptr_t flags) |
| 650 | { |
| 651 | uintptr_t sk_user_data = |
| 652 | (uintptr_t)rcu_dereference_check(__sk_user_data(sk), |
| 653 | lockdep_is_held(&sk->sk_callback_lock)); |
| 654 | |
| 655 | WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); |
| 656 | |
| 657 | if ((sk_user_data & flags) == flags) |
| 658 | return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); |
| 659 | return NULL; |
| 660 | } |
| 661 | |
| 662 | /** |
| 663 | * __rcu_dereference_sk_user_data_with_flags - return the pointer |
| 664 | * only if argument flags all has been set in sk_user_data. Otherwise |
| 665 | * return NULL |
| 666 | * |
| 667 | * @sk: socket |
| 668 | * @flags: flag bits |
| 669 | */ |
| 670 | static inline void * |
| 671 | __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, |
| 672 | uintptr_t flags) |
| 673 | { |
| 674 | uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); |
| 675 | |
| 676 | WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); |
| 677 | |
| 678 | if ((sk_user_data & flags) == flags) |
| 679 | return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); |
| 680 | return NULL; |
| 681 | } |
| 682 | |
| 683 | #define rcu_dereference_sk_user_data(sk) \ |
| 684 | __rcu_dereference_sk_user_data_with_flags(sk, 0) |
| 685 | #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ |
| 686 | ({ \ |
| 687 | uintptr_t __tmp1 = (uintptr_t)(ptr), \ |
| 688 | __tmp2 = (uintptr_t)(flags); \ |
| 689 | WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ |
| 690 | WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ |
| 691 | rcu_assign_pointer(__sk_user_data((sk)), \ |
| 692 | __tmp1 | __tmp2); \ |
| 693 | }) |
| 694 | #define rcu_assign_sk_user_data(sk, ptr) \ |
| 695 | __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) |
| 696 | |
| 697 | static inline |
| 698 | struct net *sock_net(const struct sock *sk) |
| 699 | { |
| 700 | return read_pnet(pnet: &sk->sk_net); |
| 701 | } |
| 702 | |
| 703 | static inline |
| 704 | void sock_net_set(struct sock *sk, struct net *net) |
| 705 | { |
| 706 | write_pnet(pnet: &sk->sk_net, net); |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK |
| 711 | * or not whether his port will be reused by someone else. SK_FORCE_REUSE |
| 712 | * on a socket means that the socket will reuse everybody else's port |
| 713 | * without looking at the other's sk_reuse value. |
| 714 | */ |
| 715 | |
| 716 | #define SK_NO_REUSE 0 |
| 717 | #define SK_CAN_REUSE 1 |
| 718 | #define SK_FORCE_REUSE 2 |
| 719 | |
| 720 | int sk_set_peek_off(struct sock *sk, int val); |
| 721 | |
| 722 | static inline int sk_peek_offset(const struct sock *sk, int flags) |
| 723 | { |
| 724 | if (unlikely(flags & MSG_PEEK)) { |
| 725 | return READ_ONCE(sk->sk_peek_off); |
| 726 | } |
| 727 | |
| 728 | return 0; |
| 729 | } |
| 730 | |
| 731 | static inline void sk_peek_offset_bwd(struct sock *sk, int val) |
| 732 | { |
| 733 | s32 off = READ_ONCE(sk->sk_peek_off); |
| 734 | |
| 735 | if (unlikely(off >= 0)) { |
| 736 | off = max_t(s32, off - val, 0); |
| 737 | WRITE_ONCE(sk->sk_peek_off, off); |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | static inline void sk_peek_offset_fwd(struct sock *sk, int val) |
| 742 | { |
| 743 | sk_peek_offset_bwd(sk, val: -val); |
| 744 | } |
| 745 | |
| 746 | /* |
| 747 | * Hashed lists helper routines |
| 748 | */ |
| 749 | static inline struct sock *sk_entry(const struct hlist_node *node) |
| 750 | { |
| 751 | return hlist_entry(node, struct sock, sk_node); |
| 752 | } |
| 753 | |
| 754 | static inline struct sock *__sk_head(const struct hlist_head *head) |
| 755 | { |
| 756 | return hlist_entry(head->first, struct sock, sk_node); |
| 757 | } |
| 758 | |
| 759 | static inline struct sock *sk_head(const struct hlist_head *head) |
| 760 | { |
| 761 | return hlist_empty(h: head) ? NULL : __sk_head(head); |
| 762 | } |
| 763 | |
| 764 | static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) |
| 765 | { |
| 766 | return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); |
| 767 | } |
| 768 | |
| 769 | static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) |
| 770 | { |
| 771 | return hlist_nulls_empty(h: head) ? NULL : __sk_nulls_head(head); |
| 772 | } |
| 773 | |
| 774 | static inline struct sock *sk_next(const struct sock *sk) |
| 775 | { |
| 776 | return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); |
| 777 | } |
| 778 | |
| 779 | static inline struct sock *sk_nulls_next(const struct sock *sk) |
| 780 | { |
| 781 | return (!is_a_nulls(ptr: sk->sk_nulls_node.next)) ? |
| 782 | hlist_nulls_entry(sk->sk_nulls_node.next, |
| 783 | struct sock, sk_nulls_node) : |
| 784 | NULL; |
| 785 | } |
| 786 | |
| 787 | static inline bool sk_unhashed(const struct sock *sk) |
| 788 | { |
| 789 | return hlist_unhashed(h: &sk->sk_node); |
| 790 | } |
| 791 | |
| 792 | static inline bool sk_hashed(const struct sock *sk) |
| 793 | { |
| 794 | return !sk_unhashed(sk); |
| 795 | } |
| 796 | |
| 797 | static inline void sk_node_init(struct hlist_node *node) |
| 798 | { |
| 799 | node->pprev = NULL; |
| 800 | } |
| 801 | |
| 802 | static inline void __sk_del_node(struct sock *sk) |
| 803 | { |
| 804 | __hlist_del(n: &sk->sk_node); |
| 805 | } |
| 806 | |
| 807 | /* NB: equivalent to hlist_del_init_rcu */ |
| 808 | static inline bool __sk_del_node_init(struct sock *sk) |
| 809 | { |
| 810 | if (sk_hashed(sk)) { |
| 811 | __sk_del_node(sk); |
| 812 | sk_node_init(node: &sk->sk_node); |
| 813 | return true; |
| 814 | } |
| 815 | return false; |
| 816 | } |
| 817 | |
| 818 | /* Grab socket reference count. This operation is valid only |
| 819 | when sk is ALREADY grabbed f.e. it is found in hash table |
| 820 | or a list and the lookup is made under lock preventing hash table |
| 821 | modifications. |
| 822 | */ |
| 823 | |
| 824 | static __always_inline void sock_hold(struct sock *sk) |
| 825 | { |
| 826 | refcount_inc(r: &sk->sk_refcnt); |
| 827 | } |
| 828 | |
| 829 | /* Ungrab socket in the context, which assumes that socket refcnt |
| 830 | cannot hit zero, f.e. it is true in context of any socketcall. |
| 831 | */ |
| 832 | static __always_inline void __sock_put(struct sock *sk) |
| 833 | { |
| 834 | refcount_dec(r: &sk->sk_refcnt); |
| 835 | } |
| 836 | |
| 837 | static inline bool sk_del_node_init(struct sock *sk) |
| 838 | { |
| 839 | bool rc = __sk_del_node_init(sk); |
| 840 | |
| 841 | if (rc) |
| 842 | __sock_put(sk); |
| 843 | |
| 844 | return rc; |
| 845 | } |
| 846 | #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) |
| 847 | |
| 848 | static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) |
| 849 | { |
| 850 | if (sk_hashed(sk)) { |
| 851 | hlist_nulls_del_init_rcu(n: &sk->sk_nulls_node); |
| 852 | return true; |
| 853 | } |
| 854 | return false; |
| 855 | } |
| 856 | |
| 857 | static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) |
| 858 | { |
| 859 | bool rc = __sk_nulls_del_node_init_rcu(sk); |
| 860 | |
| 861 | if (rc) |
| 862 | __sock_put(sk); |
| 863 | |
| 864 | return rc; |
| 865 | } |
| 866 | |
| 867 | static inline bool sk_nulls_replace_node_init_rcu(struct sock *old, |
| 868 | struct sock *new) |
| 869 | { |
| 870 | if (sk_hashed(sk: old)) { |
| 871 | hlist_nulls_replace_init_rcu(old: &old->sk_nulls_node, |
| 872 | new: &new->sk_nulls_node); |
| 873 | __sock_put(sk: old); |
| 874 | return true; |
| 875 | } |
| 876 | |
| 877 | return false; |
| 878 | } |
| 879 | |
| 880 | static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) |
| 881 | { |
| 882 | hlist_add_head(n: &sk->sk_node, h: list); |
| 883 | } |
| 884 | |
| 885 | static inline void sk_add_node(struct sock *sk, struct hlist_head *list) |
| 886 | { |
| 887 | sock_hold(sk); |
| 888 | __sk_add_node(sk, list); |
| 889 | } |
| 890 | |
| 891 | static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) |
| 892 | { |
| 893 | sock_hold(sk); |
| 894 | if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && |
| 895 | sk->sk_family == AF_INET6) |
| 896 | hlist_add_tail_rcu(n: &sk->sk_node, h: list); |
| 897 | else |
| 898 | hlist_add_head_rcu(n: &sk->sk_node, h: list); |
| 899 | } |
| 900 | |
| 901 | static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) |
| 902 | { |
| 903 | sock_hold(sk); |
| 904 | hlist_add_tail_rcu(n: &sk->sk_node, h: list); |
| 905 | } |
| 906 | |
| 907 | static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) |
| 908 | { |
| 909 | hlist_nulls_add_head_rcu(n: &sk->sk_nulls_node, h: list); |
| 910 | } |
| 911 | |
| 912 | static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) |
| 913 | { |
| 914 | hlist_nulls_add_tail_rcu(n: &sk->sk_nulls_node, h: list); |
| 915 | } |
| 916 | |
| 917 | static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) |
| 918 | { |
| 919 | sock_hold(sk); |
| 920 | __sk_nulls_add_node_rcu(sk, list); |
| 921 | } |
| 922 | |
| 923 | static inline void __sk_del_bind_node(struct sock *sk) |
| 924 | { |
| 925 | __hlist_del(n: &sk->sk_bind_node); |
| 926 | } |
| 927 | |
| 928 | static inline void sk_add_bind_node(struct sock *sk, |
| 929 | struct hlist_head *list) |
| 930 | { |
| 931 | hlist_add_head(n: &sk->sk_bind_node, h: list); |
| 932 | } |
| 933 | |
| 934 | #define sk_for_each(__sk, list) \ |
| 935 | hlist_for_each_entry(__sk, list, sk_node) |
| 936 | #define sk_for_each_rcu(__sk, list) \ |
| 937 | hlist_for_each_entry_rcu(__sk, list, sk_node) |
| 938 | #define sk_nulls_for_each(__sk, node, list) \ |
| 939 | hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) |
| 940 | #define sk_nulls_for_each_rcu(__sk, node, list) \ |
| 941 | hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) |
| 942 | #define sk_for_each_from(__sk) \ |
| 943 | hlist_for_each_entry_from(__sk, sk_node) |
| 944 | #define sk_nulls_for_each_from(__sk, node) \ |
| 945 | if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ |
| 946 | hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) |
| 947 | #define sk_for_each_safe(__sk, tmp, list) \ |
| 948 | hlist_for_each_entry_safe(__sk, tmp, list, sk_node) |
| 949 | #define sk_for_each_bound(__sk, list) \ |
| 950 | hlist_for_each_entry(__sk, list, sk_bind_node) |
| 951 | #define sk_for_each_bound_safe(__sk, tmp, list) \ |
| 952 | hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node) |
| 953 | |
| 954 | /** |
| 955 | * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset |
| 956 | * @tpos: the type * to use as a loop cursor. |
| 957 | * @pos: the &struct hlist_node to use as a loop cursor. |
| 958 | * @head: the head for your list. |
| 959 | * @offset: offset of hlist_node within the struct. |
| 960 | * |
| 961 | */ |
| 962 | #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ |
| 963 | for (pos = rcu_dereference(hlist_first_rcu(head)); \ |
| 964 | pos != NULL && \ |
| 965 | ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ |
| 966 | pos = rcu_dereference(hlist_next_rcu(pos))) |
| 967 | |
| 968 | static inline struct user_namespace *sk_user_ns(const struct sock *sk) |
| 969 | { |
| 970 | /* Careful only use this in a context where these parameters |
| 971 | * can not change and must all be valid, such as recvmsg from |
| 972 | * userspace. |
| 973 | */ |
| 974 | return sk->sk_socket->file->f_cred->user_ns; |
| 975 | } |
| 976 | |
| 977 | /* Sock flags */ |
| 978 | enum sock_flags { |
| 979 | SOCK_DEAD, |
| 980 | SOCK_DONE, |
| 981 | SOCK_URGINLINE, |
| 982 | SOCK_KEEPOPEN, |
| 983 | SOCK_LINGER, |
| 984 | SOCK_DESTROY, |
| 985 | SOCK_BROADCAST, |
| 986 | SOCK_TIMESTAMP, |
| 987 | SOCK_ZAPPED, |
| 988 | SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ |
| 989 | SOCK_DBG, /* %SO_DEBUG setting */ |
| 990 | SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ |
| 991 | SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ |
| 992 | SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ |
| 993 | SOCK_MEMALLOC, /* VM depends on this socket for swapping */ |
| 994 | SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ |
| 995 | SOCK_FASYNC, /* fasync() active */ |
| 996 | SOCK_RXQ_OVFL, |
| 997 | SOCK_ZEROCOPY, /* buffers from userspace */ |
| 998 | SOCK_WIFI_STATUS, /* push wifi status to userspace */ |
| 999 | SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. |
| 1000 | * Will use last 4 bytes of packet sent from |
| 1001 | * user-space instead. |
| 1002 | */ |
| 1003 | SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ |
| 1004 | SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ |
| 1005 | SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ |
| 1006 | SOCK_TXTIME, |
| 1007 | SOCK_XDP, /* XDP is attached */ |
| 1008 | SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ |
| 1009 | SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ |
| 1010 | SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */ |
| 1011 | SOCK_TIMESTAMPING_ANY, /* Copy of sk_tsflags & TSFLAGS_ANY */ |
| 1012 | }; |
| 1013 | |
| 1014 | #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) |
| 1015 | /* |
| 1016 | * The highest bit of sk_tsflags is reserved for kernel-internal |
| 1017 | * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that |
| 1018 | * SOF_TIMESTAMPING* values do not reach this reserved area |
| 1019 | */ |
| 1020 | #define SOCKCM_FLAG_TS_OPT_ID BIT(31) |
| 1021 | |
| 1022 | static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) |
| 1023 | { |
| 1024 | nsk->sk_flags = osk->sk_flags; |
| 1025 | } |
| 1026 | |
| 1027 | static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) |
| 1028 | { |
| 1029 | __set_bit(flag, &sk->sk_flags); |
| 1030 | } |
| 1031 | |
| 1032 | static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) |
| 1033 | { |
| 1034 | __clear_bit(flag, &sk->sk_flags); |
| 1035 | } |
| 1036 | |
| 1037 | static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, |
| 1038 | int valbool) |
| 1039 | { |
| 1040 | if (valbool) |
| 1041 | sock_set_flag(sk, flag: bit); |
| 1042 | else |
| 1043 | sock_reset_flag(sk, flag: bit); |
| 1044 | } |
| 1045 | |
| 1046 | static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) |
| 1047 | { |
| 1048 | return test_bit(flag, &sk->sk_flags); |
| 1049 | } |
| 1050 | |
| 1051 | #ifdef CONFIG_NET |
| 1052 | DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); |
| 1053 | static inline int sk_memalloc_socks(void) |
| 1054 | { |
| 1055 | return static_branch_unlikely(&memalloc_socks_key); |
| 1056 | } |
| 1057 | |
| 1058 | void __receive_sock(struct file *file); |
| 1059 | #else |
| 1060 | |
| 1061 | static inline int sk_memalloc_socks(void) |
| 1062 | { |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | static inline void __receive_sock(struct file *file) |
| 1067 | { } |
| 1068 | #endif |
| 1069 | |
| 1070 | static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) |
| 1071 | { |
| 1072 | return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); |
| 1073 | } |
| 1074 | |
| 1075 | static inline void sk_acceptq_removed(struct sock *sk) |
| 1076 | { |
| 1077 | WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); |
| 1078 | } |
| 1079 | |
| 1080 | static inline void sk_acceptq_added(struct sock *sk) |
| 1081 | { |
| 1082 | WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); |
| 1083 | } |
| 1084 | |
| 1085 | /* Note: If you think the test should be: |
| 1086 | * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); |
| 1087 | * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") |
| 1088 | */ |
| 1089 | static inline bool sk_acceptq_is_full(const struct sock *sk) |
| 1090 | { |
| 1091 | return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * Compute minimal free write space needed to queue new packets. |
| 1096 | */ |
| 1097 | static inline int sk_stream_min_wspace(const struct sock *sk) |
| 1098 | { |
| 1099 | return READ_ONCE(sk->sk_wmem_queued) >> 1; |
| 1100 | } |
| 1101 | |
| 1102 | static inline int sk_stream_wspace(const struct sock *sk) |
| 1103 | { |
| 1104 | return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); |
| 1105 | } |
| 1106 | |
| 1107 | static inline void sk_wmem_queued_add(struct sock *sk, int val) |
| 1108 | { |
| 1109 | WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); |
| 1110 | } |
| 1111 | |
| 1112 | static inline void sk_forward_alloc_add(struct sock *sk, int val) |
| 1113 | { |
| 1114 | /* Paired with lockless reads of sk->sk_forward_alloc */ |
| 1115 | WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); |
| 1116 | } |
| 1117 | |
| 1118 | void sk_stream_write_space(struct sock *sk); |
| 1119 | |
| 1120 | /* OOB backlog add */ |
| 1121 | static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) |
| 1122 | { |
| 1123 | /* dont let skb dst not refcounted, we are going to leave rcu lock */ |
| 1124 | skb_dst_force(skb); |
| 1125 | |
| 1126 | if (!sk->sk_backlog.tail) |
| 1127 | WRITE_ONCE(sk->sk_backlog.head, skb); |
| 1128 | else |
| 1129 | sk->sk_backlog.tail->next = skb; |
| 1130 | |
| 1131 | WRITE_ONCE(sk->sk_backlog.tail, skb); |
| 1132 | skb->next = NULL; |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Take into account size of receive queue and backlog queue |
| 1137 | * Do not take into account this skb truesize, |
| 1138 | * to allow even a single big packet to come. |
| 1139 | */ |
| 1140 | static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) |
| 1141 | { |
| 1142 | unsigned int qsize = sk->sk_backlog.len + atomic_read(v: &sk->sk_rmem_alloc); |
| 1143 | |
| 1144 | return qsize > limit; |
| 1145 | } |
| 1146 | |
| 1147 | /* The per-socket spinlock must be held here. */ |
| 1148 | static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, |
| 1149 | unsigned int limit) |
| 1150 | { |
| 1151 | if (sk_rcvqueues_full(sk, limit)) |
| 1152 | return -ENOBUFS; |
| 1153 | |
| 1154 | /* |
| 1155 | * If the skb was allocated from pfmemalloc reserves, only |
| 1156 | * allow SOCK_MEMALLOC sockets to use it as this socket is |
| 1157 | * helping free memory |
| 1158 | */ |
| 1159 | if (skb_pfmemalloc(skb) && !sock_flag(sk, flag: SOCK_MEMALLOC)) |
| 1160 | return -ENOMEM; |
| 1161 | |
| 1162 | __sk_add_backlog(sk, skb); |
| 1163 | sk->sk_backlog.len += skb->truesize; |
| 1164 | return 0; |
| 1165 | } |
| 1166 | |
| 1167 | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); |
| 1168 | |
| 1169 | INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); |
| 1170 | INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); |
| 1171 | |
| 1172 | static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
| 1173 | { |
| 1174 | if (sk_memalloc_socks() && skb_pfmemalloc(skb)) |
| 1175 | return __sk_backlog_rcv(sk, skb); |
| 1176 | |
| 1177 | return INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
| 1178 | tcp_v6_do_rcv, |
| 1179 | tcp_v4_do_rcv, |
| 1180 | sk, skb); |
| 1181 | } |
| 1182 | |
| 1183 | static inline void sk_incoming_cpu_update(struct sock *sk) |
| 1184 | { |
| 1185 | int cpu = raw_smp_processor_id(); |
| 1186 | |
| 1187 | if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) |
| 1188 | WRITE_ONCE(sk->sk_incoming_cpu, cpu); |
| 1189 | } |
| 1190 | |
| 1191 | |
| 1192 | static inline void sock_rps_save_rxhash(struct sock *sk, |
| 1193 | const struct sk_buff *skb) |
| 1194 | { |
| 1195 | #ifdef CONFIG_RPS |
| 1196 | /* The following WRITE_ONCE() is paired with the READ_ONCE() |
| 1197 | * here, and another one in sock_rps_record_flow(). |
| 1198 | */ |
| 1199 | if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) |
| 1200 | WRITE_ONCE(sk->sk_rxhash, skb->hash); |
| 1201 | #endif |
| 1202 | } |
| 1203 | |
| 1204 | static inline void sock_rps_reset_rxhash(struct sock *sk) |
| 1205 | { |
| 1206 | #ifdef CONFIG_RPS |
| 1207 | /* Paired with READ_ONCE() in sock_rps_record_flow() */ |
| 1208 | WRITE_ONCE(sk->sk_rxhash, 0); |
| 1209 | #endif |
| 1210 | } |
| 1211 | |
| 1212 | #define sk_wait_event(__sk, __timeo, __condition, __wait) \ |
| 1213 | ({ int __rc, __dis = __sk->sk_disconnects; \ |
| 1214 | release_sock(__sk); \ |
| 1215 | __rc = __condition; \ |
| 1216 | if (!__rc) { \ |
| 1217 | *(__timeo) = wait_woken(__wait, \ |
| 1218 | TASK_INTERRUPTIBLE, \ |
| 1219 | *(__timeo)); \ |
| 1220 | } \ |
| 1221 | sched_annotate_sleep(); \ |
| 1222 | lock_sock(__sk); \ |
| 1223 | __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ |
| 1224 | __rc; \ |
| 1225 | }) |
| 1226 | |
| 1227 | int sk_stream_wait_connect(struct sock *sk, long *timeo_p); |
| 1228 | int sk_stream_wait_memory(struct sock *sk, long *timeo_p); |
| 1229 | void sk_stream_wait_close(struct sock *sk, long timeo_p); |
| 1230 | int sk_stream_error(struct sock *sk, int flags, int err); |
| 1231 | void sk_stream_kill_queues(struct sock *sk); |
| 1232 | void sk_set_memalloc(struct sock *sk); |
| 1233 | void sk_clear_memalloc(struct sock *sk); |
| 1234 | |
| 1235 | void __sk_flush_backlog(struct sock *sk); |
| 1236 | |
| 1237 | static inline bool sk_flush_backlog(struct sock *sk) |
| 1238 | { |
| 1239 | if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { |
| 1240 | __sk_flush_backlog(sk); |
| 1241 | return true; |
| 1242 | } |
| 1243 | return false; |
| 1244 | } |
| 1245 | |
| 1246 | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); |
| 1247 | |
| 1248 | struct request_sock_ops; |
| 1249 | struct timewait_sock_ops; |
| 1250 | struct inet_hashinfo; |
| 1251 | struct raw_hashinfo; |
| 1252 | struct smc_hashinfo; |
| 1253 | struct module; |
| 1254 | struct sk_psock; |
| 1255 | |
| 1256 | /* |
| 1257 | * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes |
| 1258 | * un-modified. Special care is taken when initializing object to zero. |
| 1259 | */ |
| 1260 | static inline void sk_prot_clear_nulls(struct sock *sk, int size) |
| 1261 | { |
| 1262 | if (offsetof(struct sock, sk_node.next) != 0) |
| 1263 | memset(sk, 0, offsetof(struct sock, sk_node.next)); |
| 1264 | memset(&sk->sk_node.pprev, 0, |
| 1265 | size - offsetof(struct sock, sk_node.pprev)); |
| 1266 | } |
| 1267 | |
| 1268 | struct proto_accept_arg { |
| 1269 | int flags; |
| 1270 | int err; |
| 1271 | int is_empty; |
| 1272 | bool kern; |
| 1273 | }; |
| 1274 | |
| 1275 | /* Networking protocol blocks we attach to sockets. |
| 1276 | * socket layer -> transport layer interface |
| 1277 | */ |
| 1278 | struct proto { |
| 1279 | void (*close)(struct sock *sk, |
| 1280 | long timeout); |
| 1281 | int (*pre_connect)(struct sock *sk, |
| 1282 | struct sockaddr_unsized *uaddr, |
| 1283 | int addr_len); |
| 1284 | int (*connect)(struct sock *sk, |
| 1285 | struct sockaddr_unsized *uaddr, |
| 1286 | int addr_len); |
| 1287 | int (*disconnect)(struct sock *sk, int flags); |
| 1288 | |
| 1289 | struct sock * (*accept)(struct sock *sk, |
| 1290 | struct proto_accept_arg *arg); |
| 1291 | |
| 1292 | int (*ioctl)(struct sock *sk, int cmd, |
| 1293 | int *karg); |
| 1294 | int (*init)(struct sock *sk); |
| 1295 | void (*destroy)(struct sock *sk); |
| 1296 | void (*shutdown)(struct sock *sk, int how); |
| 1297 | int (*setsockopt)(struct sock *sk, int level, |
| 1298 | int optname, sockptr_t optval, |
| 1299 | unsigned int optlen); |
| 1300 | int (*getsockopt)(struct sock *sk, int level, |
| 1301 | int optname, char __user *optval, |
| 1302 | int __user *option); |
| 1303 | void (*keepalive)(struct sock *sk, int valbool); |
| 1304 | #ifdef CONFIG_COMPAT |
| 1305 | int (*compat_ioctl)(struct sock *sk, |
| 1306 | unsigned int cmd, unsigned long arg); |
| 1307 | #endif |
| 1308 | int (*sendmsg)(struct sock *sk, struct msghdr *msg, |
| 1309 | size_t len); |
| 1310 | int (*recvmsg)(struct sock *sk, struct msghdr *msg, |
| 1311 | size_t len, int flags, int *addr_len); |
| 1312 | void (*splice_eof)(struct socket *sock); |
| 1313 | int (*bind)(struct sock *sk, |
| 1314 | struct sockaddr_unsized *addr, int addr_len); |
| 1315 | int (*bind_add)(struct sock *sk, |
| 1316 | struct sockaddr_unsized *addr, int addr_len); |
| 1317 | |
| 1318 | int (*backlog_rcv) (struct sock *sk, |
| 1319 | struct sk_buff *skb); |
| 1320 | bool (*bpf_bypass_getsockopt)(int level, |
| 1321 | int optname); |
| 1322 | |
| 1323 | void (*release_cb)(struct sock *sk); |
| 1324 | |
| 1325 | /* Keeping track of sk's, looking them up, and port selection methods. */ |
| 1326 | int (*hash)(struct sock *sk); |
| 1327 | void (*unhash)(struct sock *sk); |
| 1328 | void (*rehash)(struct sock *sk); |
| 1329 | int (*get_port)(struct sock *sk, unsigned short snum); |
| 1330 | void (*put_port)(struct sock *sk); |
| 1331 | #ifdef CONFIG_BPF_SYSCALL |
| 1332 | int (*psock_update_sk_prot)(struct sock *sk, |
| 1333 | struct sk_psock *psock, |
| 1334 | bool restore); |
| 1335 | #endif |
| 1336 | |
| 1337 | /* Keeping track of sockets in use */ |
| 1338 | #ifdef CONFIG_PROC_FS |
| 1339 | unsigned int inuse_idx; |
| 1340 | #endif |
| 1341 | |
| 1342 | bool (*stream_memory_free)(const struct sock *sk, int wake); |
| 1343 | bool (*sock_is_readable)(struct sock *sk); |
| 1344 | /* Memory pressure */ |
| 1345 | void (*enter_memory_pressure)(struct sock *sk); |
| 1346 | void (*leave_memory_pressure)(struct sock *sk); |
| 1347 | atomic_long_t *memory_allocated; /* Current allocated memory. */ |
| 1348 | int __percpu *per_cpu_fw_alloc; |
| 1349 | struct percpu_counter *sockets_allocated; /* Current number of sockets. */ |
| 1350 | |
| 1351 | /* |
| 1352 | * Pressure flag: try to collapse. |
| 1353 | * Technical note: it is used by multiple contexts non atomically. |
| 1354 | * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. |
| 1355 | * All the __sk_mem_schedule() is of this nature: accounting |
| 1356 | * is strict, actions are advisory and have some latency. |
| 1357 | */ |
| 1358 | unsigned long *memory_pressure; |
| 1359 | long *sysctl_mem; |
| 1360 | |
| 1361 | int *sysctl_wmem; |
| 1362 | int *sysctl_rmem; |
| 1363 | u32 sysctl_wmem_offset; |
| 1364 | u32 sysctl_rmem_offset; |
| 1365 | |
| 1366 | int ; |
| 1367 | bool no_autobind; |
| 1368 | |
| 1369 | struct kmem_cache *slab; |
| 1370 | unsigned int obj_size; |
| 1371 | unsigned int ipv6_pinfo_offset; |
| 1372 | slab_flags_t slab_flags; |
| 1373 | unsigned int useroffset; /* Usercopy region offset */ |
| 1374 | unsigned int usersize; /* Usercopy region size */ |
| 1375 | |
| 1376 | struct request_sock_ops *rsk_prot; |
| 1377 | struct timewait_sock_ops *twsk_prot; |
| 1378 | |
| 1379 | union { |
| 1380 | struct inet_hashinfo *hashinfo; |
| 1381 | struct udp_table *udp_table; |
| 1382 | struct raw_hashinfo *raw_hash; |
| 1383 | struct smc_hashinfo *smc_hash; |
| 1384 | } h; |
| 1385 | |
| 1386 | struct module *owner; |
| 1387 | |
| 1388 | char name[32]; |
| 1389 | |
| 1390 | struct list_head node; |
| 1391 | int (*diag_destroy)(struct sock *sk, int err); |
| 1392 | } __randomize_layout; |
| 1393 | |
| 1394 | int proto_register(struct proto *prot, int alloc_slab); |
| 1395 | void proto_unregister(struct proto *prot); |
| 1396 | int sock_load_diag_module(int family, int protocol); |
| 1397 | |
| 1398 | INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); |
| 1399 | |
| 1400 | static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) |
| 1401 | { |
| 1402 | if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) |
| 1403 | return false; |
| 1404 | |
| 1405 | return sk->sk_prot->stream_memory_free ? |
| 1406 | INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, |
| 1407 | tcp_stream_memory_free, sk, wake) : true; |
| 1408 | } |
| 1409 | |
| 1410 | static inline bool sk_stream_memory_free(const struct sock *sk) |
| 1411 | { |
| 1412 | return __sk_stream_memory_free(sk, wake: 0); |
| 1413 | } |
| 1414 | |
| 1415 | static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) |
| 1416 | { |
| 1417 | return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && |
| 1418 | __sk_stream_memory_free(sk, wake); |
| 1419 | } |
| 1420 | |
| 1421 | static inline bool sk_stream_is_writeable(const struct sock *sk) |
| 1422 | { |
| 1423 | return __sk_stream_is_writeable(sk, wake: 0); |
| 1424 | } |
| 1425 | |
| 1426 | static inline int sk_under_cgroup_hierarchy(struct sock *sk, |
| 1427 | struct cgroup *ancestor) |
| 1428 | { |
| 1429 | #ifdef CONFIG_SOCK_CGROUP_DATA |
| 1430 | return cgroup_is_descendant(cgrp: sock_cgroup_ptr(skcd: &sk->sk_cgrp_data), |
| 1431 | ancestor); |
| 1432 | #else |
| 1433 | return -ENOTSUPP; |
| 1434 | #endif |
| 1435 | } |
| 1436 | |
| 1437 | #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 |
| 1438 | |
| 1439 | static inline void sk_sockets_allocated_dec(struct sock *sk) |
| 1440 | { |
| 1441 | percpu_counter_add_batch(fbc: sk->sk_prot->sockets_allocated, amount: -1, |
| 1442 | SK_ALLOC_PERCPU_COUNTER_BATCH); |
| 1443 | } |
| 1444 | |
| 1445 | static inline void sk_sockets_allocated_inc(struct sock *sk) |
| 1446 | { |
| 1447 | percpu_counter_add_batch(fbc: sk->sk_prot->sockets_allocated, amount: 1, |
| 1448 | SK_ALLOC_PERCPU_COUNTER_BATCH); |
| 1449 | } |
| 1450 | |
| 1451 | static inline u64 |
| 1452 | sk_sockets_allocated_read_positive(struct sock *sk) |
| 1453 | { |
| 1454 | return percpu_counter_read_positive(fbc: sk->sk_prot->sockets_allocated); |
| 1455 | } |
| 1456 | |
| 1457 | static inline int |
| 1458 | proto_sockets_allocated_sum_positive(struct proto *prot) |
| 1459 | { |
| 1460 | return percpu_counter_sum_positive(fbc: prot->sockets_allocated); |
| 1461 | } |
| 1462 | |
| 1463 | #ifdef CONFIG_PROC_FS |
| 1464 | #define PROTO_INUSE_NR 64 /* should be enough for the first time */ |
| 1465 | struct prot_inuse { |
| 1466 | int all; |
| 1467 | int val[PROTO_INUSE_NR]; |
| 1468 | }; |
| 1469 | |
| 1470 | static inline void sock_prot_inuse_add(const struct net *net, |
| 1471 | const struct proto *prot, int val) |
| 1472 | { |
| 1473 | this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); |
| 1474 | } |
| 1475 | |
| 1476 | static inline void sock_inuse_add(const struct net *net, int val) |
| 1477 | { |
| 1478 | this_cpu_add(net->core.prot_inuse->all, val); |
| 1479 | } |
| 1480 | |
| 1481 | int sock_prot_inuse_get(struct net *net, struct proto *proto); |
| 1482 | int sock_inuse_get(struct net *net); |
| 1483 | #else |
| 1484 | static inline void sock_prot_inuse_add(const struct net *net, |
| 1485 | const struct proto *prot, int val) |
| 1486 | { |
| 1487 | } |
| 1488 | |
| 1489 | static inline void sock_inuse_add(const struct net *net, int val) |
| 1490 | { |
| 1491 | } |
| 1492 | #endif |
| 1493 | |
| 1494 | |
| 1495 | /* With per-bucket locks this operation is not-atomic, so that |
| 1496 | * this version is not worse. |
| 1497 | */ |
| 1498 | static inline int __sk_prot_rehash(struct sock *sk) |
| 1499 | { |
| 1500 | sk->sk_prot->unhash(sk); |
| 1501 | return sk->sk_prot->hash(sk); |
| 1502 | } |
| 1503 | |
| 1504 | /* About 10 seconds */ |
| 1505 | #define SOCK_DESTROY_TIME (10*HZ) |
| 1506 | |
| 1507 | /* Sockets 0-1023 can't be bound to unless you are superuser */ |
| 1508 | #define PROT_SOCK 1024 |
| 1509 | |
| 1510 | #define SHUTDOWN_MASK 3 |
| 1511 | #define RCV_SHUTDOWN 1 |
| 1512 | #define SEND_SHUTDOWN 2 |
| 1513 | |
| 1514 | #define SOCK_BINDADDR_LOCK 4 |
| 1515 | #define SOCK_BINDPORT_LOCK 8 |
| 1516 | /** |
| 1517 | * define SOCK_CONNECT_BIND - &sock->sk_userlocks flag for auto-bind at connect() time |
| 1518 | */ |
| 1519 | #define SOCK_CONNECT_BIND 16 |
| 1520 | |
| 1521 | struct socket_alloc { |
| 1522 | struct socket socket; |
| 1523 | struct inode vfs_inode; |
| 1524 | }; |
| 1525 | |
| 1526 | static inline struct socket *SOCKET_I(struct inode *inode) |
| 1527 | { |
| 1528 | return &container_of(inode, struct socket_alloc, vfs_inode)->socket; |
| 1529 | } |
| 1530 | |
| 1531 | static inline struct inode *SOCK_INODE(struct socket *socket) |
| 1532 | { |
| 1533 | return &container_of(socket, struct socket_alloc, socket)->vfs_inode; |
| 1534 | } |
| 1535 | |
| 1536 | /* |
| 1537 | * Functions for memory accounting |
| 1538 | */ |
| 1539 | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); |
| 1540 | int __sk_mem_schedule(struct sock *sk, int size, int kind); |
| 1541 | void __sk_mem_reduce_allocated(struct sock *sk, int amount); |
| 1542 | void __sk_mem_reclaim(struct sock *sk, int amount); |
| 1543 | |
| 1544 | #define SK_MEM_SEND 0 |
| 1545 | #define SK_MEM_RECV 1 |
| 1546 | |
| 1547 | /* sysctl_mem values are in pages */ |
| 1548 | static inline long sk_prot_mem_limits(const struct sock *sk, int index) |
| 1549 | { |
| 1550 | return READ_ONCE(sk->sk_prot->sysctl_mem[index]); |
| 1551 | } |
| 1552 | |
| 1553 | static inline int sk_mem_pages(int amt) |
| 1554 | { |
| 1555 | return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1556 | } |
| 1557 | |
| 1558 | static inline bool sk_has_account(struct sock *sk) |
| 1559 | { |
| 1560 | /* return true if protocol supports memory accounting */ |
| 1561 | return !!sk->sk_prot->memory_allocated; |
| 1562 | } |
| 1563 | |
| 1564 | static inline bool sk_wmem_schedule(struct sock *sk, int size) |
| 1565 | { |
| 1566 | int delta; |
| 1567 | |
| 1568 | if (!sk_has_account(sk)) |
| 1569 | return true; |
| 1570 | delta = size - sk->sk_forward_alloc; |
| 1571 | return delta <= 0 || __sk_mem_schedule(sk, size: delta, SK_MEM_SEND); |
| 1572 | } |
| 1573 | |
| 1574 | static inline bool |
| 1575 | __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc) |
| 1576 | { |
| 1577 | int delta; |
| 1578 | |
| 1579 | if (!sk_has_account(sk)) |
| 1580 | return true; |
| 1581 | delta = size - sk->sk_forward_alloc; |
| 1582 | return delta <= 0 || __sk_mem_schedule(sk, size: delta, SK_MEM_RECV) || |
| 1583 | pfmemalloc; |
| 1584 | } |
| 1585 | |
| 1586 | static inline bool |
| 1587 | sk_rmem_schedule(struct sock *sk, const struct sk_buff *skb, int size) |
| 1588 | { |
| 1589 | return __sk_rmem_schedule(sk, size, pfmemalloc: skb_pfmemalloc(skb)); |
| 1590 | } |
| 1591 | |
| 1592 | static inline int sk_unused_reserved_mem(const struct sock *sk) |
| 1593 | { |
| 1594 | int unused_mem; |
| 1595 | |
| 1596 | if (likely(!sk->sk_reserved_mem)) |
| 1597 | return 0; |
| 1598 | |
| 1599 | unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - |
| 1600 | atomic_read(v: &sk->sk_rmem_alloc); |
| 1601 | |
| 1602 | return unused_mem > 0 ? unused_mem : 0; |
| 1603 | } |
| 1604 | |
| 1605 | static inline void sk_mem_reclaim(struct sock *sk) |
| 1606 | { |
| 1607 | int reclaimable; |
| 1608 | |
| 1609 | if (!sk_has_account(sk)) |
| 1610 | return; |
| 1611 | |
| 1612 | reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); |
| 1613 | |
| 1614 | if (reclaimable >= (int)PAGE_SIZE) |
| 1615 | __sk_mem_reclaim(sk, amount: reclaimable); |
| 1616 | } |
| 1617 | |
| 1618 | static inline void sk_mem_reclaim_final(struct sock *sk) |
| 1619 | { |
| 1620 | sk->sk_reserved_mem = 0; |
| 1621 | sk_mem_reclaim(sk); |
| 1622 | } |
| 1623 | |
| 1624 | static inline void sk_mem_charge(struct sock *sk, int size) |
| 1625 | { |
| 1626 | if (!sk_has_account(sk)) |
| 1627 | return; |
| 1628 | sk_forward_alloc_add(sk, val: -size); |
| 1629 | } |
| 1630 | |
| 1631 | static inline void sk_mem_uncharge(struct sock *sk, int size) |
| 1632 | { |
| 1633 | if (!sk_has_account(sk)) |
| 1634 | return; |
| 1635 | sk_forward_alloc_add(sk, val: size); |
| 1636 | sk_mem_reclaim(sk); |
| 1637 | } |
| 1638 | |
| 1639 | void __sk_charge(struct sock *sk, gfp_t gfp); |
| 1640 | |
| 1641 | #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES) |
| 1642 | static inline void sk_owner_set(struct sock *sk, struct module *owner) |
| 1643 | { |
| 1644 | __module_get(module: owner); |
| 1645 | sk->sk_owner = owner; |
| 1646 | } |
| 1647 | |
| 1648 | static inline void sk_owner_clear(struct sock *sk) |
| 1649 | { |
| 1650 | sk->sk_owner = NULL; |
| 1651 | } |
| 1652 | |
| 1653 | static inline void sk_owner_put(struct sock *sk) |
| 1654 | { |
| 1655 | module_put(module: sk->sk_owner); |
| 1656 | } |
| 1657 | #else |
| 1658 | static inline void sk_owner_set(struct sock *sk, struct module *owner) |
| 1659 | { |
| 1660 | } |
| 1661 | |
| 1662 | static inline void sk_owner_clear(struct sock *sk) |
| 1663 | { |
| 1664 | } |
| 1665 | |
| 1666 | static inline void sk_owner_put(struct sock *sk) |
| 1667 | { |
| 1668 | } |
| 1669 | #endif |
| 1670 | /* |
| 1671 | * Macro so as to not evaluate some arguments when |
| 1672 | * lockdep is not enabled. |
| 1673 | * |
| 1674 | * Mark both the sk_lock and the sk_lock.slock as a |
| 1675 | * per-address-family lock class. |
| 1676 | */ |
| 1677 | #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ |
| 1678 | do { \ |
| 1679 | sk_owner_set(sk, THIS_MODULE); \ |
| 1680 | sk->sk_lock.owned = 0; \ |
| 1681 | init_waitqueue_head(&sk->sk_lock.wq); \ |
| 1682 | spin_lock_init(&(sk)->sk_lock.slock); \ |
| 1683 | debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ |
| 1684 | sizeof((sk)->sk_lock)); \ |
| 1685 | lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ |
| 1686 | (skey), (sname)); \ |
| 1687 | lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ |
| 1688 | } while (0) |
| 1689 | |
| 1690 | static inline bool lockdep_sock_is_held(const struct sock *sk) |
| 1691 | { |
| 1692 | return lockdep_is_held(&sk->sk_lock) || |
| 1693 | lockdep_is_held(&sk->sk_lock.slock); |
| 1694 | } |
| 1695 | |
| 1696 | void lock_sock_nested(struct sock *sk, int subclass); |
| 1697 | |
| 1698 | static inline void lock_sock(struct sock *sk) |
| 1699 | { |
| 1700 | lock_sock_nested(sk, subclass: 0); |
| 1701 | } |
| 1702 | |
| 1703 | void __lock_sock(struct sock *sk); |
| 1704 | void __release_sock(struct sock *sk); |
| 1705 | void release_sock(struct sock *sk); |
| 1706 | |
| 1707 | /* BH context may only use the following locking interface. */ |
| 1708 | #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) |
| 1709 | #define bh_lock_sock_nested(__sk) \ |
| 1710 | spin_lock_nested(&((__sk)->sk_lock.slock), \ |
| 1711 | SINGLE_DEPTH_NESTING) |
| 1712 | #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) |
| 1713 | |
| 1714 | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); |
| 1715 | |
| 1716 | /** |
| 1717 | * lock_sock_fast - fast version of lock_sock |
| 1718 | * @sk: socket |
| 1719 | * |
| 1720 | * This version should be used for very small section, where process won't block |
| 1721 | * return false if fast path is taken: |
| 1722 | * |
| 1723 | * sk_lock.slock locked, owned = 0, BH disabled |
| 1724 | * |
| 1725 | * return true if slow path is taken: |
| 1726 | * |
| 1727 | * sk_lock.slock unlocked, owned = 1, BH enabled |
| 1728 | */ |
| 1729 | static inline bool lock_sock_fast(struct sock *sk) |
| 1730 | { |
| 1731 | /* The sk_lock has mutex_lock() semantics here. */ |
| 1732 | mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); |
| 1733 | |
| 1734 | return __lock_sock_fast(sk); |
| 1735 | } |
| 1736 | |
| 1737 | /* fast socket lock variant for caller already holding a [different] socket lock */ |
| 1738 | static inline bool lock_sock_fast_nested(struct sock *sk) |
| 1739 | { |
| 1740 | mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); |
| 1741 | |
| 1742 | return __lock_sock_fast(sk); |
| 1743 | } |
| 1744 | |
| 1745 | /** |
| 1746 | * unlock_sock_fast - complement of lock_sock_fast |
| 1747 | * @sk: socket |
| 1748 | * @slow: slow mode |
| 1749 | * |
| 1750 | * fast unlock socket for user context. |
| 1751 | * If slow mode is on, we call regular release_sock() |
| 1752 | */ |
| 1753 | static inline void unlock_sock_fast(struct sock *sk, bool slow) |
| 1754 | __releases(&sk->sk_lock.slock) |
| 1755 | { |
| 1756 | if (slow) { |
| 1757 | release_sock(sk); |
| 1758 | __release(&sk->sk_lock.slock); |
| 1759 | } else { |
| 1760 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
| 1761 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | void sockopt_lock_sock(struct sock *sk); |
| 1766 | void sockopt_release_sock(struct sock *sk); |
| 1767 | bool sockopt_ns_capable(struct user_namespace *ns, int cap); |
| 1768 | bool sockopt_capable(int cap); |
| 1769 | |
| 1770 | /* Used by processes to "lock" a socket state, so that |
| 1771 | * interrupts and bottom half handlers won't change it |
| 1772 | * from under us. It essentially blocks any incoming |
| 1773 | * packets, so that we won't get any new data or any |
| 1774 | * packets that change the state of the socket. |
| 1775 | * |
| 1776 | * While locked, BH processing will add new packets to |
| 1777 | * the backlog queue. This queue is processed by the |
| 1778 | * owner of the socket lock right before it is released. |
| 1779 | * |
| 1780 | * Since ~2.3.5 it is also exclusive sleep lock serializing |
| 1781 | * accesses from user process context. |
| 1782 | */ |
| 1783 | |
| 1784 | static inline void sock_owned_by_me(const struct sock *sk) |
| 1785 | { |
| 1786 | #ifdef CONFIG_LOCKDEP |
| 1787 | WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); |
| 1788 | #endif |
| 1789 | } |
| 1790 | |
| 1791 | static inline void sock_not_owned_by_me(const struct sock *sk) |
| 1792 | { |
| 1793 | #ifdef CONFIG_LOCKDEP |
| 1794 | WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); |
| 1795 | #endif |
| 1796 | } |
| 1797 | |
| 1798 | static inline bool sock_owned_by_user(const struct sock *sk) |
| 1799 | { |
| 1800 | sock_owned_by_me(sk); |
| 1801 | return sk->sk_lock.owned; |
| 1802 | } |
| 1803 | |
| 1804 | static inline bool sock_owned_by_user_nocheck(const struct sock *sk) |
| 1805 | { |
| 1806 | return sk->sk_lock.owned; |
| 1807 | } |
| 1808 | |
| 1809 | static inline void sock_release_ownership(struct sock *sk) |
| 1810 | { |
| 1811 | DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); |
| 1812 | sk->sk_lock.owned = 0; |
| 1813 | |
| 1814 | /* The sk_lock has mutex_unlock() semantics: */ |
| 1815 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
| 1816 | } |
| 1817 | |
| 1818 | /* no reclassification while locks are held */ |
| 1819 | static inline bool sock_allow_reclassification(const struct sock *csk) |
| 1820 | { |
| 1821 | struct sock *sk = (struct sock *)csk; |
| 1822 | |
| 1823 | return !sock_owned_by_user_nocheck(sk) && |
| 1824 | !spin_is_locked(lock: &sk->sk_lock.slock); |
| 1825 | } |
| 1826 | |
| 1827 | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
| 1828 | struct proto *prot, int kern); |
| 1829 | void sk_free(struct sock *sk); |
| 1830 | void sk_net_refcnt_upgrade(struct sock *sk); |
| 1831 | void sk_destruct(struct sock *sk); |
| 1832 | struct sock *sk_clone(const struct sock *sk, const gfp_t priority, bool lock); |
| 1833 | |
| 1834 | static inline struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) |
| 1835 | { |
| 1836 | return sk_clone(sk, priority, lock: true); |
| 1837 | } |
| 1838 | |
| 1839 | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
| 1840 | gfp_t priority); |
| 1841 | void __sock_wfree(struct sk_buff *skb); |
| 1842 | void sock_wfree(struct sk_buff *skb); |
| 1843 | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
| 1844 | gfp_t priority); |
| 1845 | void skb_orphan_partial(struct sk_buff *skb); |
| 1846 | void sock_rfree(struct sk_buff *skb); |
| 1847 | void sock_efree(struct sk_buff *skb); |
| 1848 | #ifdef CONFIG_INET |
| 1849 | void sock_edemux(struct sk_buff *skb); |
| 1850 | void sock_pfree(struct sk_buff *skb); |
| 1851 | |
| 1852 | static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk) |
| 1853 | { |
| 1854 | skb_orphan(skb); |
| 1855 | if (refcount_inc_not_zero(r: &sk->sk_refcnt)) { |
| 1856 | skb->sk = sk; |
| 1857 | skb->destructor = sock_edemux; |
| 1858 | } |
| 1859 | } |
| 1860 | #else |
| 1861 | #define sock_edemux sock_efree |
| 1862 | #endif |
| 1863 | |
| 1864 | int sk_setsockopt(struct sock *sk, int level, int optname, |
| 1865 | sockptr_t optval, unsigned int optlen); |
| 1866 | int sock_setsockopt(struct socket *sock, int level, int op, |
| 1867 | sockptr_t optval, unsigned int optlen); |
| 1868 | int do_sock_setsockopt(struct socket *sock, bool compat, int level, |
| 1869 | int optname, sockptr_t optval, int optlen); |
| 1870 | int do_sock_getsockopt(struct socket *sock, bool compat, int level, |
| 1871 | int optname, sockptr_t optval, sockptr_t optlen); |
| 1872 | |
| 1873 | int sk_getsockopt(struct sock *sk, int level, int optname, |
| 1874 | sockptr_t optval, sockptr_t optlen); |
| 1875 | int sock_gettstamp(struct socket *sock, void __user *userstamp, |
| 1876 | bool timeval, bool time32); |
| 1877 | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long , |
| 1878 | unsigned long data_len, int noblock, |
| 1879 | int *errcode, int max_page_order); |
| 1880 | |
| 1881 | static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, |
| 1882 | unsigned long size, |
| 1883 | int noblock, int *errcode) |
| 1884 | { |
| 1885 | return sock_alloc_send_pskb(sk, header_len: size, data_len: 0, noblock, errcode, max_page_order: 0); |
| 1886 | } |
| 1887 | |
| 1888 | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); |
| 1889 | void *sock_kmemdup(struct sock *sk, const void *src, |
| 1890 | int size, gfp_t priority); |
| 1891 | void sock_kfree_s(struct sock *sk, void *mem, int size); |
| 1892 | void sock_kzfree_s(struct sock *sk, void *mem, int size); |
| 1893 | void sk_send_sigurg(struct sock *sk); |
| 1894 | |
| 1895 | static inline void sock_replace_proto(struct sock *sk, struct proto *proto) |
| 1896 | { |
| 1897 | if (sk->sk_socket) |
| 1898 | clear_bit(nr: SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags); |
| 1899 | WRITE_ONCE(sk->sk_prot, proto); |
| 1900 | } |
| 1901 | |
| 1902 | struct sockcm_cookie { |
| 1903 | u64 transmit_time; |
| 1904 | u32 mark; |
| 1905 | u32 tsflags; |
| 1906 | u32 ts_opt_id; |
| 1907 | u32 priority; |
| 1908 | u32 dmabuf_id; |
| 1909 | }; |
| 1910 | |
| 1911 | static inline void sockcm_init(struct sockcm_cookie *sockc, |
| 1912 | const struct sock *sk) |
| 1913 | { |
| 1914 | *sockc = (struct sockcm_cookie) { |
| 1915 | .mark = READ_ONCE(sk->sk_mark), |
| 1916 | .tsflags = READ_ONCE(sk->sk_tsflags), |
| 1917 | .priority = READ_ONCE(sk->sk_priority), |
| 1918 | }; |
| 1919 | } |
| 1920 | |
| 1921 | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
| 1922 | struct sockcm_cookie *sockc); |
| 1923 | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
| 1924 | struct sockcm_cookie *sockc); |
| 1925 | |
| 1926 | /* |
| 1927 | * Functions to fill in entries in struct proto_ops when a protocol |
| 1928 | * does not implement a particular function. |
| 1929 | */ |
| 1930 | int sock_no_bind(struct socket *sock, struct sockaddr_unsized *saddr, int len); |
| 1931 | int sock_no_connect(struct socket *sock, struct sockaddr_unsized *saddr, int len, int flags); |
| 1932 | int sock_no_socketpair(struct socket *, struct socket *); |
| 1933 | int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *); |
| 1934 | int sock_no_getname(struct socket *, struct sockaddr *, int); |
| 1935 | int sock_no_ioctl(struct socket *, unsigned int, unsigned long); |
| 1936 | int sock_no_listen(struct socket *, int); |
| 1937 | int sock_no_shutdown(struct socket *, int); |
| 1938 | int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); |
| 1939 | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); |
| 1940 | int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); |
| 1941 | int sock_no_mmap(struct file *file, struct socket *sock, |
| 1942 | struct vm_area_struct *vma); |
| 1943 | |
| 1944 | /* |
| 1945 | * Functions to fill in entries in struct proto_ops when a protocol |
| 1946 | * uses the inet style. |
| 1947 | */ |
| 1948 | int sock_common_getsockopt(struct socket *sock, int level, int optname, |
| 1949 | char __user *optval, int __user *optlen); |
| 1950 | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
| 1951 | int flags); |
| 1952 | int sock_common_setsockopt(struct socket *sock, int level, int optname, |
| 1953 | sockptr_t optval, unsigned int optlen); |
| 1954 | |
| 1955 | void sk_common_release(struct sock *sk); |
| 1956 | |
| 1957 | /* |
| 1958 | * Default socket callbacks and setup code |
| 1959 | */ |
| 1960 | |
| 1961 | /* Initialise core socket variables using an explicit uid. */ |
| 1962 | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); |
| 1963 | |
| 1964 | /* Initialise core socket variables. |
| 1965 | * Assumes struct socket *sock is embedded in a struct socket_alloc. |
| 1966 | */ |
| 1967 | void sock_init_data(struct socket *sock, struct sock *sk); |
| 1968 | |
| 1969 | /* |
| 1970 | * Socket reference counting postulates. |
| 1971 | * |
| 1972 | * * Each user of socket SHOULD hold a reference count. |
| 1973 | * * Each access point to socket (an hash table bucket, reference from a list, |
| 1974 | * running timer, skb in flight MUST hold a reference count. |
| 1975 | * * When reference count hits 0, it means it will never increase back. |
| 1976 | * * When reference count hits 0, it means that no references from |
| 1977 | * outside exist to this socket and current process on current CPU |
| 1978 | * is last user and may/should destroy this socket. |
| 1979 | * * sk_free is called from any context: process, BH, IRQ. When |
| 1980 | * it is called, socket has no references from outside -> sk_free |
| 1981 | * may release descendant resources allocated by the socket, but |
| 1982 | * to the time when it is called, socket is NOT referenced by any |
| 1983 | * hash tables, lists etc. |
| 1984 | * * Packets, delivered from outside (from network or from another process) |
| 1985 | * and enqueued on receive/error queues SHOULD NOT grab reference count, |
| 1986 | * when they sit in queue. Otherwise, packets will leak to hole, when |
| 1987 | * socket is looked up by one cpu and unhasing is made by another CPU. |
| 1988 | * It is true for udp/raw, netlink (leak to receive and error queues), tcp |
| 1989 | * (leak to backlog). Packet socket does all the processing inside |
| 1990 | * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets |
| 1991 | * use separate SMP lock, so that they are prone too. |
| 1992 | */ |
| 1993 | |
| 1994 | /* Ungrab socket and destroy it, if it was the last reference. */ |
| 1995 | static inline void sock_put(struct sock *sk) |
| 1996 | { |
| 1997 | if (refcount_dec_and_test(r: &sk->sk_refcnt)) |
| 1998 | sk_free(sk); |
| 1999 | } |
| 2000 | /* Generic version of sock_put(), dealing with all sockets |
| 2001 | * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) |
| 2002 | */ |
| 2003 | void sock_gen_put(struct sock *sk); |
| 2004 | |
| 2005 | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, |
| 2006 | unsigned int trim_cap, bool refcounted); |
| 2007 | static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
| 2008 | const int nested) |
| 2009 | { |
| 2010 | return __sk_receive_skb(sk, skb, nested, trim_cap: 1, refcounted: true); |
| 2011 | } |
| 2012 | |
| 2013 | static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) |
| 2014 | { |
| 2015 | /* sk_tx_queue_mapping accept only upto a 16-bit value */ |
| 2016 | if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) |
| 2017 | return; |
| 2018 | /* Paired with READ_ONCE() in sk_tx_queue_get() and |
| 2019 | * other WRITE_ONCE() because socket lock might be not held. |
| 2020 | */ |
| 2021 | if (READ_ONCE(sk->sk_tx_queue_mapping) != tx_queue) { |
| 2022 | WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); |
| 2023 | WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); |
| 2024 | return; |
| 2025 | } |
| 2026 | |
| 2027 | /* Refresh sk_tx_queue_mapping_jiffies if too old. */ |
| 2028 | if (time_is_before_jiffies(READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + HZ)) |
| 2029 | WRITE_ONCE(sk->sk_tx_queue_mapping_jiffies, jiffies); |
| 2030 | } |
| 2031 | |
| 2032 | #define NO_QUEUE_MAPPING USHRT_MAX |
| 2033 | |
| 2034 | static inline void sk_tx_queue_clear(struct sock *sk) |
| 2035 | { |
| 2036 | /* Paired with READ_ONCE() in sk_tx_queue_get() and |
| 2037 | * other WRITE_ONCE() because socket lock might be not held. |
| 2038 | */ |
| 2039 | WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); |
| 2040 | } |
| 2041 | |
| 2042 | int sk_tx_queue_get(const struct sock *sk); |
| 2043 | |
| 2044 | static inline void __sk_rx_queue_set(struct sock *sk, |
| 2045 | const struct sk_buff *skb, |
| 2046 | bool force_set) |
| 2047 | { |
| 2048 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| 2049 | if (skb_rx_queue_recorded(skb)) { |
| 2050 | u16 rx_queue = skb_get_rx_queue(skb); |
| 2051 | |
| 2052 | if (force_set || |
| 2053 | unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) |
| 2054 | WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); |
| 2055 | } |
| 2056 | #endif |
| 2057 | } |
| 2058 | |
| 2059 | static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) |
| 2060 | { |
| 2061 | __sk_rx_queue_set(sk, skb, force_set: true); |
| 2062 | } |
| 2063 | |
| 2064 | static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) |
| 2065 | { |
| 2066 | __sk_rx_queue_set(sk, skb, force_set: false); |
| 2067 | } |
| 2068 | |
| 2069 | static inline void sk_rx_queue_clear(struct sock *sk) |
| 2070 | { |
| 2071 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| 2072 | WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); |
| 2073 | #endif |
| 2074 | } |
| 2075 | |
| 2076 | static inline int sk_rx_queue_get(const struct sock *sk) |
| 2077 | { |
| 2078 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
| 2079 | if (sk) { |
| 2080 | int res = READ_ONCE(sk->sk_rx_queue_mapping); |
| 2081 | |
| 2082 | if (res != NO_QUEUE_MAPPING) |
| 2083 | return res; |
| 2084 | } |
| 2085 | #endif |
| 2086 | |
| 2087 | return -1; |
| 2088 | } |
| 2089 | |
| 2090 | static inline void sk_set_socket(struct sock *sk, struct socket *sock) |
| 2091 | { |
| 2092 | sk->sk_socket = sock; |
| 2093 | if (sock) { |
| 2094 | WRITE_ONCE(sk->sk_uid, SOCK_INODE(sock)->i_uid); |
| 2095 | WRITE_ONCE(sk->sk_ino, SOCK_INODE(sock)->i_ino); |
| 2096 | } else { |
| 2097 | /* Note: sk_uid is unchanged. */ |
| 2098 | WRITE_ONCE(sk->sk_ino, 0); |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | static inline wait_queue_head_t *sk_sleep(struct sock *sk) |
| 2103 | { |
| 2104 | BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); |
| 2105 | return &rcu_dereference_raw(sk->sk_wq)->wait; |
| 2106 | } |
| 2107 | /* Detach socket from process context. |
| 2108 | * Announce socket dead, detach it from wait queue and inode. |
| 2109 | * Note that parent inode held reference count on this struct sock, |
| 2110 | * we do not release it in this function, because protocol |
| 2111 | * probably wants some additional cleanups or even continuing |
| 2112 | * to work with this socket (TCP). |
| 2113 | */ |
| 2114 | static inline void sock_orphan(struct sock *sk) |
| 2115 | { |
| 2116 | write_lock_bh(&sk->sk_callback_lock); |
| 2117 | sock_set_flag(sk, flag: SOCK_DEAD); |
| 2118 | sk_set_socket(sk, NULL); |
| 2119 | sk->sk_wq = NULL; |
| 2120 | write_unlock_bh(&sk->sk_callback_lock); |
| 2121 | } |
| 2122 | |
| 2123 | static inline void sock_graft(struct sock *sk, struct socket *parent) |
| 2124 | { |
| 2125 | WARN_ON(parent->sk); |
| 2126 | write_lock_bh(&sk->sk_callback_lock); |
| 2127 | rcu_assign_pointer(sk->sk_wq, &parent->wq); |
| 2128 | parent->sk = sk; |
| 2129 | sk_set_socket(sk, sock: parent); |
| 2130 | security_sock_graft(sk, parent); |
| 2131 | write_unlock_bh(&sk->sk_callback_lock); |
| 2132 | } |
| 2133 | |
| 2134 | static inline unsigned long sock_i_ino(const struct sock *sk) |
| 2135 | { |
| 2136 | /* Paired with WRITE_ONCE() in sock_graft() and sock_orphan() */ |
| 2137 | return READ_ONCE(sk->sk_ino); |
| 2138 | } |
| 2139 | |
| 2140 | static inline kuid_t sk_uid(const struct sock *sk) |
| 2141 | { |
| 2142 | /* Paired with WRITE_ONCE() in sockfs_setattr() */ |
| 2143 | return READ_ONCE(sk->sk_uid); |
| 2144 | } |
| 2145 | |
| 2146 | static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) |
| 2147 | { |
| 2148 | return sk ? sk_uid(sk) : make_kuid(from: net->user_ns, uid: 0); |
| 2149 | } |
| 2150 | |
| 2151 | static inline u32 net_tx_rndhash(void) |
| 2152 | { |
| 2153 | u32 v = get_random_u32(); |
| 2154 | |
| 2155 | return v ?: 1; |
| 2156 | } |
| 2157 | |
| 2158 | static inline void sk_set_txhash(struct sock *sk) |
| 2159 | { |
| 2160 | /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ |
| 2161 | WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); |
| 2162 | } |
| 2163 | |
| 2164 | static inline bool sk_rethink_txhash(struct sock *sk) |
| 2165 | { |
| 2166 | if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { |
| 2167 | sk_set_txhash(sk); |
| 2168 | return true; |
| 2169 | } |
| 2170 | return false; |
| 2171 | } |
| 2172 | |
| 2173 | static inline struct dst_entry * |
| 2174 | __sk_dst_get(const struct sock *sk) |
| 2175 | { |
| 2176 | return rcu_dereference_check(sk->sk_dst_cache, |
| 2177 | lockdep_sock_is_held(sk)); |
| 2178 | } |
| 2179 | |
| 2180 | static inline struct dst_entry * |
| 2181 | sk_dst_get(const struct sock *sk) |
| 2182 | { |
| 2183 | struct dst_entry *dst; |
| 2184 | |
| 2185 | rcu_read_lock(); |
| 2186 | dst = rcu_dereference(sk->sk_dst_cache); |
| 2187 | if (dst && !rcuref_get(ref: &dst->__rcuref)) |
| 2188 | dst = NULL; |
| 2189 | rcu_read_unlock(); |
| 2190 | return dst; |
| 2191 | } |
| 2192 | |
| 2193 | static inline void __dst_negative_advice(struct sock *sk) |
| 2194 | { |
| 2195 | struct dst_entry *dst = __sk_dst_get(sk); |
| 2196 | |
| 2197 | if (dst && dst->ops->negative_advice) |
| 2198 | dst->ops->negative_advice(sk, dst); |
| 2199 | } |
| 2200 | |
| 2201 | static inline void dst_negative_advice(struct sock *sk) |
| 2202 | { |
| 2203 | sk_rethink_txhash(sk); |
| 2204 | __dst_negative_advice(sk); |
| 2205 | } |
| 2206 | |
| 2207 | static inline void |
| 2208 | __sk_dst_set(struct sock *sk, struct dst_entry *dst) |
| 2209 | { |
| 2210 | struct dst_entry *old_dst; |
| 2211 | |
| 2212 | sk_tx_queue_clear(sk); |
| 2213 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
| 2214 | old_dst = rcu_dereference_protected(sk->sk_dst_cache, |
| 2215 | lockdep_sock_is_held(sk)); |
| 2216 | rcu_assign_pointer(sk->sk_dst_cache, dst); |
| 2217 | dst_release(dst: old_dst); |
| 2218 | } |
| 2219 | |
| 2220 | static inline void |
| 2221 | sk_dst_set(struct sock *sk, struct dst_entry *dst) |
| 2222 | { |
| 2223 | struct dst_entry *old_dst; |
| 2224 | |
| 2225 | sk_tx_queue_clear(sk); |
| 2226 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
| 2227 | old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst))); |
| 2228 | dst_release(dst: old_dst); |
| 2229 | } |
| 2230 | |
| 2231 | static inline void |
| 2232 | __sk_dst_reset(struct sock *sk) |
| 2233 | { |
| 2234 | __sk_dst_set(sk, NULL); |
| 2235 | } |
| 2236 | |
| 2237 | static inline void |
| 2238 | sk_dst_reset(struct sock *sk) |
| 2239 | { |
| 2240 | sk_dst_set(sk, NULL); |
| 2241 | } |
| 2242 | |
| 2243 | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); |
| 2244 | |
| 2245 | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); |
| 2246 | |
| 2247 | static inline void sk_dst_confirm(struct sock *sk) |
| 2248 | { |
| 2249 | if (!READ_ONCE(sk->sk_dst_pending_confirm)) |
| 2250 | WRITE_ONCE(sk->sk_dst_pending_confirm, 1); |
| 2251 | } |
| 2252 | |
| 2253 | static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) |
| 2254 | { |
| 2255 | if (skb_get_dst_pending_confirm(skb)) { |
| 2256 | struct sock *sk = skb->sk; |
| 2257 | |
| 2258 | if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) |
| 2259 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
| 2260 | neigh_confirm(n); |
| 2261 | } |
| 2262 | } |
| 2263 | |
| 2264 | bool sk_mc_loop(const struct sock *sk); |
| 2265 | |
| 2266 | static inline bool sk_can_gso(const struct sock *sk) |
| 2267 | { |
| 2268 | return net_gso_ok(features: sk->sk_route_caps, gso_type: sk->sk_gso_type); |
| 2269 | } |
| 2270 | |
| 2271 | void sk_setup_caps(struct sock *sk, struct dst_entry *dst); |
| 2272 | |
| 2273 | static inline void sk_gso_disable(struct sock *sk) |
| 2274 | { |
| 2275 | sk->sk_gso_disabled = 1; |
| 2276 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| 2277 | } |
| 2278 | |
| 2279 | static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, |
| 2280 | struct iov_iter *from, char *to, |
| 2281 | int copy, int offset) |
| 2282 | { |
| 2283 | if (skb->ip_summed == CHECKSUM_NONE) { |
| 2284 | __wsum csum = 0; |
| 2285 | if (!csum_and_copy_from_iter_full(addr: to, bytes: copy, csum: &csum, i: from)) |
| 2286 | return -EFAULT; |
| 2287 | skb->csum = csum_block_add(csum: skb->csum, csum2: csum, offset); |
| 2288 | } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { |
| 2289 | if (!copy_from_iter_full_nocache(addr: to, bytes: copy, i: from)) |
| 2290 | return -EFAULT; |
| 2291 | } else if (!copy_from_iter_full(addr: to, bytes: copy, i: from)) |
| 2292 | return -EFAULT; |
| 2293 | |
| 2294 | return 0; |
| 2295 | } |
| 2296 | |
| 2297 | static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, |
| 2298 | struct iov_iter *from, int copy) |
| 2299 | { |
| 2300 | int err, offset = skb->len; |
| 2301 | |
| 2302 | err = skb_do_copy_data_nocache(sk, skb, from, to: skb_put(skb, len: copy), |
| 2303 | copy, offset); |
| 2304 | if (err) |
| 2305 | __skb_trim(skb, len: offset); |
| 2306 | |
| 2307 | return err; |
| 2308 | } |
| 2309 | |
| 2310 | static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, |
| 2311 | struct sk_buff *skb, |
| 2312 | struct page *page, |
| 2313 | int off, int copy) |
| 2314 | { |
| 2315 | int err; |
| 2316 | |
| 2317 | err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, |
| 2318 | copy, offset: skb->len); |
| 2319 | if (err) |
| 2320 | return err; |
| 2321 | |
| 2322 | skb_len_add(skb, delta: copy); |
| 2323 | sk_wmem_queued_add(sk, val: copy); |
| 2324 | sk_mem_charge(sk, size: copy); |
| 2325 | return 0; |
| 2326 | } |
| 2327 | |
| 2328 | #define SK_WMEM_ALLOC_BIAS 1 |
| 2329 | /** |
| 2330 | * sk_wmem_alloc_get - returns write allocations |
| 2331 | * @sk: socket |
| 2332 | * |
| 2333 | * Return: sk_wmem_alloc minus initial offset of one |
| 2334 | */ |
| 2335 | static inline int sk_wmem_alloc_get(const struct sock *sk) |
| 2336 | { |
| 2337 | return refcount_read(r: &sk->sk_wmem_alloc) - SK_WMEM_ALLOC_BIAS; |
| 2338 | } |
| 2339 | |
| 2340 | /** |
| 2341 | * sk_rmem_alloc_get - returns read allocations |
| 2342 | * @sk: socket |
| 2343 | * |
| 2344 | * Return: sk_rmem_alloc |
| 2345 | */ |
| 2346 | static inline int sk_rmem_alloc_get(const struct sock *sk) |
| 2347 | { |
| 2348 | return atomic_read(v: &sk->sk_rmem_alloc); |
| 2349 | } |
| 2350 | |
| 2351 | /** |
| 2352 | * sk_has_allocations - check if allocations are outstanding |
| 2353 | * @sk: socket |
| 2354 | * |
| 2355 | * Return: true if socket has write or read allocations |
| 2356 | */ |
| 2357 | static inline bool sk_has_allocations(const struct sock *sk) |
| 2358 | { |
| 2359 | return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); |
| 2360 | } |
| 2361 | |
| 2362 | /** |
| 2363 | * skwq_has_sleeper - check if there are any waiting processes |
| 2364 | * @wq: struct socket_wq |
| 2365 | * |
| 2366 | * Return: true if socket_wq has waiting processes |
| 2367 | * |
| 2368 | * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory |
| 2369 | * barrier call. They were added due to the race found within the tcp code. |
| 2370 | * |
| 2371 | * Consider following tcp code paths:: |
| 2372 | * |
| 2373 | * CPU1 CPU2 |
| 2374 | * sys_select receive packet |
| 2375 | * ... ... |
| 2376 | * __add_wait_queue update tp->rcv_nxt |
| 2377 | * ... ... |
| 2378 | * tp->rcv_nxt check sock_def_readable |
| 2379 | * ... { |
| 2380 | * schedule rcu_read_lock(); |
| 2381 | * wq = rcu_dereference(sk->sk_wq); |
| 2382 | * if (wq && waitqueue_active(&wq->wait)) |
| 2383 | * wake_up_interruptible(&wq->wait) |
| 2384 | * ... |
| 2385 | * } |
| 2386 | * |
| 2387 | * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay |
| 2388 | * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 |
| 2389 | * could then endup calling schedule and sleep forever if there are no more |
| 2390 | * data on the socket. |
| 2391 | * |
| 2392 | */ |
| 2393 | static inline bool skwq_has_sleeper(struct socket_wq *wq) |
| 2394 | { |
| 2395 | return wq && wq_has_sleeper(wq_head: &wq->wait); |
| 2396 | } |
| 2397 | |
| 2398 | /** |
| 2399 | * sock_poll_wait - wrapper for the poll_wait call. |
| 2400 | * @filp: file |
| 2401 | * @sock: socket to wait on |
| 2402 | * @p: poll_table |
| 2403 | * |
| 2404 | * See the comments in the wq_has_sleeper function. |
| 2405 | */ |
| 2406 | static inline void sock_poll_wait(struct file *filp, struct socket *sock, |
| 2407 | poll_table *p) |
| 2408 | { |
| 2409 | /* Provides a barrier we need to be sure we are in sync |
| 2410 | * with the socket flags modification. |
| 2411 | * |
| 2412 | * This memory barrier is paired in the wq_has_sleeper. |
| 2413 | */ |
| 2414 | poll_wait(filp, wait_address: &sock->wq.wait, p); |
| 2415 | } |
| 2416 | |
| 2417 | static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) |
| 2418 | { |
| 2419 | /* This pairs with WRITE_ONCE() in sk_set_txhash() */ |
| 2420 | u32 txhash = READ_ONCE(sk->sk_txhash); |
| 2421 | |
| 2422 | if (txhash) { |
| 2423 | skb->l4_hash = 1; |
| 2424 | skb->hash = txhash; |
| 2425 | } |
| 2426 | } |
| 2427 | |
| 2428 | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); |
| 2429 | |
| 2430 | /* |
| 2431 | * Queue a received datagram if it will fit. Stream and sequenced |
| 2432 | * protocols can't normally use this as they need to fit buffers in |
| 2433 | * and play with them. |
| 2434 | * |
| 2435 | * Inlined as it's very short and called for pretty much every |
| 2436 | * packet ever received. |
| 2437 | */ |
| 2438 | static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) |
| 2439 | { |
| 2440 | skb_orphan(skb); |
| 2441 | skb->sk = sk; |
| 2442 | skb->destructor = sock_rfree; |
| 2443 | atomic_add(i: skb->truesize, v: &sk->sk_rmem_alloc); |
| 2444 | sk_mem_charge(sk, size: skb->truesize); |
| 2445 | } |
| 2446 | |
| 2447 | static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) |
| 2448 | { |
| 2449 | if (sk && refcount_inc_not_zero(r: &sk->sk_refcnt)) { |
| 2450 | skb_orphan(skb); |
| 2451 | skb->destructor = sock_efree; |
| 2452 | skb->sk = sk; |
| 2453 | return true; |
| 2454 | } |
| 2455 | return false; |
| 2456 | } |
| 2457 | |
| 2458 | static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) |
| 2459 | { |
| 2460 | skb = skb_clone(skb, priority: sk_gfp_mask(sk, GFP_ATOMIC)); |
| 2461 | if (skb) { |
| 2462 | if (sk_rmem_schedule(sk, skb, size: skb->truesize)) { |
| 2463 | skb_set_owner_r(skb, sk); |
| 2464 | return skb; |
| 2465 | } |
| 2466 | __kfree_skb(skb); |
| 2467 | } |
| 2468 | return NULL; |
| 2469 | } |
| 2470 | |
| 2471 | static inline void skb_prepare_for_gro(struct sk_buff *skb) |
| 2472 | { |
| 2473 | if (skb->destructor != sock_wfree) { |
| 2474 | skb_orphan(skb); |
| 2475 | return; |
| 2476 | } |
| 2477 | skb->slow_gro = 1; |
| 2478 | } |
| 2479 | |
| 2480 | void sk_reset_timer(struct sock *sk, struct timer_list *timer, |
| 2481 | unsigned long expires); |
| 2482 | |
| 2483 | void sk_stop_timer(struct sock *sk, struct timer_list *timer); |
| 2484 | |
| 2485 | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); |
| 2486 | |
| 2487 | int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, |
| 2488 | struct sk_buff *skb, unsigned int flags, |
| 2489 | void (*destructor)(struct sock *sk, |
| 2490 | struct sk_buff *skb)); |
| 2491 | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); |
| 2492 | |
| 2493 | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
| 2494 | enum skb_drop_reason *reason); |
| 2495 | |
| 2496 | static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
| 2497 | { |
| 2498 | return sock_queue_rcv_skb_reason(sk, skb, NULL); |
| 2499 | } |
| 2500 | |
| 2501 | int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); |
| 2502 | struct sk_buff *sock_dequeue_err_skb(struct sock *sk); |
| 2503 | |
| 2504 | /* |
| 2505 | * Recover an error report and clear atomically |
| 2506 | */ |
| 2507 | |
| 2508 | static inline int sock_error(struct sock *sk) |
| 2509 | { |
| 2510 | int err; |
| 2511 | |
| 2512 | /* Avoid an atomic operation for the common case. |
| 2513 | * This is racy since another cpu/thread can change sk_err under us. |
| 2514 | */ |
| 2515 | if (likely(data_race(!sk->sk_err))) |
| 2516 | return 0; |
| 2517 | |
| 2518 | err = xchg(&sk->sk_err, 0); |
| 2519 | return -err; |
| 2520 | } |
| 2521 | |
| 2522 | void sk_error_report(struct sock *sk); |
| 2523 | |
| 2524 | static inline unsigned long sock_wspace(struct sock *sk) |
| 2525 | { |
| 2526 | int amt = 0; |
| 2527 | |
| 2528 | if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { |
| 2529 | amt = sk->sk_sndbuf - refcount_read(r: &sk->sk_wmem_alloc); |
| 2530 | if (amt < 0) |
| 2531 | amt = 0; |
| 2532 | } |
| 2533 | return amt; |
| 2534 | } |
| 2535 | |
| 2536 | /* Note: |
| 2537 | * We use sk->sk_wq_raw, from contexts knowing this |
| 2538 | * pointer is not NULL and cannot disappear/change. |
| 2539 | */ |
| 2540 | static inline void sk_set_bit(int nr, struct sock *sk) |
| 2541 | { |
| 2542 | if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && |
| 2543 | !sock_flag(sk, flag: SOCK_FASYNC)) |
| 2544 | return; |
| 2545 | |
| 2546 | set_bit(nr, addr: &sk->sk_wq_raw->flags); |
| 2547 | } |
| 2548 | |
| 2549 | static inline void sk_clear_bit(int nr, struct sock *sk) |
| 2550 | { |
| 2551 | if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && |
| 2552 | !sock_flag(sk, flag: SOCK_FASYNC)) |
| 2553 | return; |
| 2554 | |
| 2555 | clear_bit(nr, addr: &sk->sk_wq_raw->flags); |
| 2556 | } |
| 2557 | |
| 2558 | static inline void sk_wake_async(const struct sock *sk, int how, int band) |
| 2559 | { |
| 2560 | if (sock_flag(sk, flag: SOCK_FASYNC)) { |
| 2561 | rcu_read_lock(); |
| 2562 | sock_wake_async(rcu_dereference(sk->sk_wq), how, band); |
| 2563 | rcu_read_unlock(); |
| 2564 | } |
| 2565 | } |
| 2566 | |
| 2567 | static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band) |
| 2568 | { |
| 2569 | if (unlikely(sock_flag(sk, SOCK_FASYNC))) |
| 2570 | sock_wake_async(rcu_dereference(sk->sk_wq), how, band); |
| 2571 | } |
| 2572 | |
| 2573 | /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might |
| 2574 | * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. |
| 2575 | * Note: for send buffers, TCP works better if we can build two skbs at |
| 2576 | * minimum. |
| 2577 | */ |
| 2578 | #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) |
| 2579 | |
| 2580 | #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) |
| 2581 | #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE |
| 2582 | |
| 2583 | static inline void sk_stream_moderate_sndbuf(struct sock *sk) |
| 2584 | { |
| 2585 | u32 val; |
| 2586 | |
| 2587 | if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) |
| 2588 | return; |
| 2589 | |
| 2590 | val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); |
| 2591 | val = max_t(u32, val, sk_unused_reserved_mem(sk)); |
| 2592 | |
| 2593 | WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); |
| 2594 | } |
| 2595 | |
| 2596 | /** |
| 2597 | * sk_page_frag - return an appropriate page_frag |
| 2598 | * @sk: socket |
| 2599 | * |
| 2600 | * Use the per task page_frag instead of the per socket one for |
| 2601 | * optimization when we know that we're in process context and own |
| 2602 | * everything that's associated with %current. |
| 2603 | * |
| 2604 | * Both direct reclaim and page faults can nest inside other |
| 2605 | * socket operations and end up recursing into sk_page_frag() |
| 2606 | * while it's already in use: explicitly avoid task page_frag |
| 2607 | * when users disable sk_use_task_frag. |
| 2608 | * |
| 2609 | * Return: a per task page_frag if context allows that, |
| 2610 | * otherwise a per socket one. |
| 2611 | */ |
| 2612 | static inline struct page_frag *sk_page_frag(struct sock *sk) |
| 2613 | { |
| 2614 | if (sk->sk_use_task_frag) |
| 2615 | return ¤t->task_frag; |
| 2616 | |
| 2617 | return &sk->sk_frag; |
| 2618 | } |
| 2619 | |
| 2620 | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); |
| 2621 | |
| 2622 | static inline bool __sock_writeable(const struct sock *sk, int wmem_alloc) |
| 2623 | { |
| 2624 | return wmem_alloc < (READ_ONCE(sk->sk_sndbuf) >> 1); |
| 2625 | } |
| 2626 | /* |
| 2627 | * Default write policy as shown to user space via poll/select/SIGIO |
| 2628 | */ |
| 2629 | static inline bool sock_writeable(const struct sock *sk) |
| 2630 | { |
| 2631 | return __sock_writeable(sk, wmem_alloc: refcount_read(r: &sk->sk_wmem_alloc)); |
| 2632 | } |
| 2633 | |
| 2634 | static inline gfp_t gfp_any(void) |
| 2635 | { |
| 2636 | return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; |
| 2637 | } |
| 2638 | |
| 2639 | static inline gfp_t gfp_memcg_charge(void) |
| 2640 | { |
| 2641 | return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; |
| 2642 | } |
| 2643 | |
| 2644 | #ifdef CONFIG_MEMCG |
| 2645 | static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) |
| 2646 | { |
| 2647 | return sk->sk_memcg; |
| 2648 | } |
| 2649 | |
| 2650 | static inline bool mem_cgroup_sk_enabled(const struct sock *sk) |
| 2651 | { |
| 2652 | return mem_cgroup_sockets_enabled && mem_cgroup_from_sk(sk); |
| 2653 | } |
| 2654 | |
| 2655 | static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) |
| 2656 | { |
| 2657 | struct mem_cgroup *memcg = mem_cgroup_from_sk(sk); |
| 2658 | |
| 2659 | #ifdef CONFIG_MEMCG_V1 |
| 2660 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| 2661 | return !!memcg->tcpmem_pressure; |
| 2662 | #endif /* CONFIG_MEMCG_V1 */ |
| 2663 | |
| 2664 | do { |
| 2665 | if (time_before64(get_jiffies_64(), |
| 2666 | mem_cgroup_get_socket_pressure(memcg))) { |
| 2667 | memcg_memory_event(memcg: mem_cgroup_from_sk(sk), |
| 2668 | event: MEMCG_SOCK_THROTTLED); |
| 2669 | return true; |
| 2670 | } |
| 2671 | } while ((memcg = parent_mem_cgroup(memcg))); |
| 2672 | |
| 2673 | return false; |
| 2674 | } |
| 2675 | #else |
| 2676 | static inline struct mem_cgroup *mem_cgroup_from_sk(const struct sock *sk) |
| 2677 | { |
| 2678 | return NULL; |
| 2679 | } |
| 2680 | |
| 2681 | static inline bool mem_cgroup_sk_enabled(const struct sock *sk) |
| 2682 | { |
| 2683 | return false; |
| 2684 | } |
| 2685 | |
| 2686 | static inline bool mem_cgroup_sk_under_memory_pressure(const struct sock *sk) |
| 2687 | { |
| 2688 | return false; |
| 2689 | } |
| 2690 | #endif |
| 2691 | |
| 2692 | static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) |
| 2693 | { |
| 2694 | return noblock ? 0 : READ_ONCE(sk->sk_rcvtimeo); |
| 2695 | } |
| 2696 | |
| 2697 | static inline long sock_sndtimeo(const struct sock *sk, bool noblock) |
| 2698 | { |
| 2699 | return noblock ? 0 : READ_ONCE(sk->sk_sndtimeo); |
| 2700 | } |
| 2701 | |
| 2702 | static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) |
| 2703 | { |
| 2704 | int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); |
| 2705 | |
| 2706 | return v ?: 1; |
| 2707 | } |
| 2708 | |
| 2709 | /* Alas, with timeout socket operations are not restartable. |
| 2710 | * Compare this to poll(). |
| 2711 | */ |
| 2712 | static inline int sock_intr_errno(long timeo) |
| 2713 | { |
| 2714 | return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; |
| 2715 | } |
| 2716 | |
| 2717 | struct sock_skb_cb { |
| 2718 | u32 dropcount; |
| 2719 | }; |
| 2720 | |
| 2721 | /* Store sock_skb_cb at the end of skb->cb[] so protocol families |
| 2722 | * using skb->cb[] would keep using it directly and utilize its |
| 2723 | * alignment guarantee. |
| 2724 | */ |
| 2725 | #define SOCK_SKB_CB_OFFSET (sizeof_field(struct sk_buff, cb) - \ |
| 2726 | sizeof(struct sock_skb_cb)) |
| 2727 | |
| 2728 | #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ |
| 2729 | SOCK_SKB_CB_OFFSET)) |
| 2730 | |
| 2731 | #define sock_skb_cb_check_size(size) \ |
| 2732 | BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) |
| 2733 | |
| 2734 | static inline void sk_drops_add(struct sock *sk, int segs) |
| 2735 | { |
| 2736 | struct numa_drop_counters *ndc = sk->sk_drop_counters; |
| 2737 | |
| 2738 | if (ndc) |
| 2739 | numa_drop_add(ndc, val: segs); |
| 2740 | else |
| 2741 | atomic_add(i: segs, v: &sk->sk_drops); |
| 2742 | } |
| 2743 | |
| 2744 | static inline void sk_drops_inc(struct sock *sk) |
| 2745 | { |
| 2746 | sk_drops_add(sk, segs: 1); |
| 2747 | } |
| 2748 | |
| 2749 | static inline int sk_drops_read(const struct sock *sk) |
| 2750 | { |
| 2751 | const struct numa_drop_counters *ndc = sk->sk_drop_counters; |
| 2752 | |
| 2753 | if (ndc) { |
| 2754 | DEBUG_NET_WARN_ON_ONCE(atomic_read(&sk->sk_drops)); |
| 2755 | return numa_drop_read(ndc); |
| 2756 | } |
| 2757 | return atomic_read(v: &sk->sk_drops); |
| 2758 | } |
| 2759 | |
| 2760 | static inline void sk_drops_reset(struct sock *sk) |
| 2761 | { |
| 2762 | struct numa_drop_counters *ndc = sk->sk_drop_counters; |
| 2763 | |
| 2764 | if (ndc) |
| 2765 | numa_drop_reset(ndc); |
| 2766 | atomic_set(v: &sk->sk_drops, i: 0); |
| 2767 | } |
| 2768 | |
| 2769 | static inline void |
| 2770 | sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) |
| 2771 | { |
| 2772 | SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, flag: SOCK_RXQ_OVFL) ? |
| 2773 | sk_drops_read(sk) : 0; |
| 2774 | } |
| 2775 | |
| 2776 | static inline void sk_drops_skbadd(struct sock *sk, const struct sk_buff *skb) |
| 2777 | { |
| 2778 | int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); |
| 2779 | |
| 2780 | sk_drops_add(sk, segs); |
| 2781 | } |
| 2782 | |
| 2783 | static inline ktime_t sock_read_timestamp(struct sock *sk) |
| 2784 | { |
| 2785 | #if BITS_PER_LONG==32 |
| 2786 | unsigned int seq; |
| 2787 | ktime_t kt; |
| 2788 | |
| 2789 | do { |
| 2790 | seq = read_seqbegin(&sk->sk_stamp_seq); |
| 2791 | kt = sk->sk_stamp; |
| 2792 | } while (read_seqretry(&sk->sk_stamp_seq, seq)); |
| 2793 | |
| 2794 | return kt; |
| 2795 | #else |
| 2796 | return READ_ONCE(sk->sk_stamp); |
| 2797 | #endif |
| 2798 | } |
| 2799 | |
| 2800 | static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) |
| 2801 | { |
| 2802 | #if BITS_PER_LONG==32 |
| 2803 | write_seqlock(&sk->sk_stamp_seq); |
| 2804 | sk->sk_stamp = kt; |
| 2805 | write_sequnlock(&sk->sk_stamp_seq); |
| 2806 | #else |
| 2807 | WRITE_ONCE(sk->sk_stamp, kt); |
| 2808 | #endif |
| 2809 | } |
| 2810 | |
| 2811 | void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
| 2812 | struct sk_buff *skb); |
| 2813 | void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
| 2814 | struct sk_buff *skb); |
| 2815 | |
| 2816 | bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk); |
| 2817 | int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, |
| 2818 | struct timespec64 *ts); |
| 2819 | |
| 2820 | static inline void |
| 2821 | sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) |
| 2822 | { |
| 2823 | struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); |
| 2824 | u32 tsflags = READ_ONCE(sk->sk_tsflags); |
| 2825 | ktime_t kt = skb->tstamp; |
| 2826 | /* |
| 2827 | * generate control messages if |
| 2828 | * - receive time stamping in software requested |
| 2829 | * - software time stamp available and wanted |
| 2830 | * - hardware time stamps available and wanted |
| 2831 | */ |
| 2832 | if (sock_flag(sk, flag: SOCK_RCVTSTAMP) || |
| 2833 | (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || |
| 2834 | (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || |
| 2835 | (hwtstamps->hwtstamp && |
| 2836 | (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) |
| 2837 | __sock_recv_timestamp(msg, sk, skb); |
| 2838 | else |
| 2839 | sock_write_timestamp(sk, kt); |
| 2840 | |
| 2841 | if (sock_flag(sk, flag: SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) |
| 2842 | __sock_recv_wifi_status(msg, sk, skb); |
| 2843 | } |
| 2844 | |
| 2845 | void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
| 2846 | struct sk_buff *skb); |
| 2847 | |
| 2848 | #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) |
| 2849 | static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
| 2850 | struct sk_buff *skb) |
| 2851 | { |
| 2852 | #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ |
| 2853 | (1UL << SOCK_RCVTSTAMP) | \ |
| 2854 | (1UL << SOCK_RCVMARK) | \ |
| 2855 | (1UL << SOCK_RCVPRIORITY) | \ |
| 2856 | (1UL << SOCK_TIMESTAMPING_ANY)) |
| 2857 | #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ |
| 2858 | SOF_TIMESTAMPING_RAW_HARDWARE) |
| 2859 | |
| 2860 | if (READ_ONCE(sk->sk_flags) & FLAGS_RECV_CMSGS) |
| 2861 | __sock_recv_cmsgs(msg, sk, skb); |
| 2862 | else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) |
| 2863 | sock_write_timestamp(sk, kt: skb->tstamp); |
| 2864 | else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) |
| 2865 | sock_write_timestamp(sk, kt: 0); |
| 2866 | } |
| 2867 | |
| 2868 | void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags); |
| 2869 | |
| 2870 | /** |
| 2871 | * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped |
| 2872 | * @sk: socket sending this packet |
| 2873 | * @sockc: pointer to socket cmsg cookie to get timestamping info |
| 2874 | * @tx_flags: completed with instructions for time stamping |
| 2875 | * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) |
| 2876 | * |
| 2877 | * Note: callers should take care of initial ``*tx_flags`` value (usually 0) |
| 2878 | */ |
| 2879 | static inline void _sock_tx_timestamp(struct sock *sk, |
| 2880 | const struct sockcm_cookie *sockc, |
| 2881 | __u8 *tx_flags, __u32 *tskey) |
| 2882 | { |
| 2883 | __u32 tsflags = sockc->tsflags; |
| 2884 | |
| 2885 | if (unlikely(tsflags)) { |
| 2886 | __sock_tx_timestamp(tsflags, tx_flags); |
| 2887 | if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && |
| 2888 | tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) { |
| 2889 | if (tsflags & SOCKCM_FLAG_TS_OPT_ID) |
| 2890 | *tskey = sockc->ts_opt_id; |
| 2891 | else |
| 2892 | *tskey = atomic_inc_return(v: &sk->sk_tskey) - 1; |
| 2893 | } |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | static inline void sock_tx_timestamp(struct sock *sk, |
| 2898 | const struct sockcm_cookie *sockc, |
| 2899 | __u8 *tx_flags) |
| 2900 | { |
| 2901 | _sock_tx_timestamp(sk, sockc, tx_flags, NULL); |
| 2902 | } |
| 2903 | |
| 2904 | static inline void skb_setup_tx_timestamp(struct sk_buff *skb, |
| 2905 | const struct sockcm_cookie *sockc) |
| 2906 | { |
| 2907 | _sock_tx_timestamp(sk: skb->sk, sockc, tx_flags: &skb_shinfo(skb)->tx_flags, |
| 2908 | tskey: &skb_shinfo(skb)->tskey); |
| 2909 | } |
| 2910 | |
| 2911 | static inline bool sk_is_inet(const struct sock *sk) |
| 2912 | { |
| 2913 | int family = READ_ONCE(sk->sk_family); |
| 2914 | |
| 2915 | return family == AF_INET || family == AF_INET6; |
| 2916 | } |
| 2917 | |
| 2918 | static inline bool sk_is_tcp(const struct sock *sk) |
| 2919 | { |
| 2920 | return sk_is_inet(sk) && |
| 2921 | sk->sk_type == SOCK_STREAM && |
| 2922 | sk->sk_protocol == IPPROTO_TCP; |
| 2923 | } |
| 2924 | |
| 2925 | static inline bool sk_is_udp(const struct sock *sk) |
| 2926 | { |
| 2927 | return sk_is_inet(sk) && |
| 2928 | sk->sk_type == SOCK_DGRAM && |
| 2929 | sk->sk_protocol == IPPROTO_UDP; |
| 2930 | } |
| 2931 | |
| 2932 | static inline bool sk_is_unix(const struct sock *sk) |
| 2933 | { |
| 2934 | return sk->sk_family == AF_UNIX; |
| 2935 | } |
| 2936 | |
| 2937 | static inline bool sk_is_stream_unix(const struct sock *sk) |
| 2938 | { |
| 2939 | return sk_is_unix(sk) && sk->sk_type == SOCK_STREAM; |
| 2940 | } |
| 2941 | |
| 2942 | static inline bool sk_is_vsock(const struct sock *sk) |
| 2943 | { |
| 2944 | return sk->sk_family == AF_VSOCK; |
| 2945 | } |
| 2946 | |
| 2947 | static inline bool sk_may_scm_recv(const struct sock *sk) |
| 2948 | { |
| 2949 | return (IS_ENABLED(CONFIG_UNIX) && sk->sk_family == AF_UNIX) || |
| 2950 | sk->sk_family == AF_NETLINK || |
| 2951 | (IS_ENABLED(CONFIG_BT) && sk->sk_family == AF_BLUETOOTH); |
| 2952 | } |
| 2953 | |
| 2954 | /** |
| 2955 | * sk_eat_skb - Release a skb if it is no longer needed |
| 2956 | * @sk: socket to eat this skb from |
| 2957 | * @skb: socket buffer to eat |
| 2958 | * |
| 2959 | * This routine must be called with interrupts disabled or with the socket |
| 2960 | * locked so that the sk_buff queue operation is ok. |
| 2961 | */ |
| 2962 | static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) |
| 2963 | { |
| 2964 | __skb_unlink(skb, list: &sk->sk_receive_queue); |
| 2965 | __kfree_skb(skb); |
| 2966 | } |
| 2967 | |
| 2968 | static inline bool |
| 2969 | skb_sk_is_prefetched(struct sk_buff *skb) |
| 2970 | { |
| 2971 | #ifdef CONFIG_INET |
| 2972 | return skb->destructor == sock_pfree; |
| 2973 | #else |
| 2974 | return false; |
| 2975 | #endif /* CONFIG_INET */ |
| 2976 | } |
| 2977 | |
| 2978 | /* This helper checks if a socket is a full socket, |
| 2979 | * ie _not_ a timewait or request socket. |
| 2980 | */ |
| 2981 | static inline bool sk_fullsock(const struct sock *sk) |
| 2982 | { |
| 2983 | return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); |
| 2984 | } |
| 2985 | |
| 2986 | static inline bool |
| 2987 | sk_is_refcounted(struct sock *sk) |
| 2988 | { |
| 2989 | /* Only full sockets have sk->sk_flags. */ |
| 2990 | return !sk_fullsock(sk) || !sock_flag(sk, flag: SOCK_RCU_FREE); |
| 2991 | } |
| 2992 | |
| 2993 | static inline bool |
| 2994 | sk_requests_wifi_status(struct sock *sk) |
| 2995 | { |
| 2996 | return sk && sk_fullsock(sk) && sock_flag(sk, flag: SOCK_WIFI_STATUS); |
| 2997 | } |
| 2998 | |
| 2999 | /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV |
| 3000 | * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) |
| 3001 | */ |
| 3002 | static inline bool sk_listener(const struct sock *sk) |
| 3003 | { |
| 3004 | return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); |
| 3005 | } |
| 3006 | |
| 3007 | /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT |
| 3008 | * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE) |
| 3009 | * TCP RST and ACK can be attached to TIME_WAIT. |
| 3010 | */ |
| 3011 | static inline bool sk_listener_or_tw(const struct sock *sk) |
| 3012 | { |
| 3013 | return (1 << READ_ONCE(sk->sk_state)) & |
| 3014 | (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT); |
| 3015 | } |
| 3016 | |
| 3017 | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); |
| 3018 | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, |
| 3019 | int type); |
| 3020 | |
| 3021 | bool sk_ns_capable(const struct sock *sk, |
| 3022 | struct user_namespace *user_ns, int cap); |
| 3023 | bool sk_capable(const struct sock *sk, int cap); |
| 3024 | bool sk_net_capable(const struct sock *sk, int cap); |
| 3025 | |
| 3026 | void sk_get_meminfo(const struct sock *sk, u32 *meminfo); |
| 3027 | |
| 3028 | /* Take into consideration the size of the struct sk_buff overhead in the |
| 3029 | * determination of these values, since that is non-constant across |
| 3030 | * platforms. This makes socket queueing behavior and performance |
| 3031 | * not depend upon such differences. |
| 3032 | */ |
| 3033 | #define _SK_MEM_PACKETS 256 |
| 3034 | #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) |
| 3035 | #define SK_WMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) |
| 3036 | #define SK_RMEM_DEFAULT (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) |
| 3037 | |
| 3038 | extern __u32 sysctl_wmem_max; |
| 3039 | extern __u32 sysctl_rmem_max; |
| 3040 | |
| 3041 | extern __u32 sysctl_wmem_default; |
| 3042 | extern __u32 sysctl_rmem_default; |
| 3043 | |
| 3044 | #define SKB_FRAG_PAGE_ORDER get_order(32768) |
| 3045 | DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
| 3046 | |
| 3047 | static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) |
| 3048 | { |
| 3049 | /* Does this proto have per netns sysctl_wmem ? */ |
| 3050 | if (proto->sysctl_wmem_offset) |
| 3051 | return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); |
| 3052 | |
| 3053 | return READ_ONCE(*proto->sysctl_wmem); |
| 3054 | } |
| 3055 | |
| 3056 | static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) |
| 3057 | { |
| 3058 | /* Does this proto have per netns sysctl_rmem ? */ |
| 3059 | if (proto->sysctl_rmem_offset) |
| 3060 | return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); |
| 3061 | |
| 3062 | return READ_ONCE(*proto->sysctl_rmem); |
| 3063 | } |
| 3064 | |
| 3065 | /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) |
| 3066 | * Some wifi drivers need to tweak it to get more chunks. |
| 3067 | * They can use this helper from their ndo_start_xmit() |
| 3068 | */ |
| 3069 | static inline void sk_pacing_shift_update(struct sock *sk, int val) |
| 3070 | { |
| 3071 | if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) |
| 3072 | return; |
| 3073 | WRITE_ONCE(sk->sk_pacing_shift, val); |
| 3074 | } |
| 3075 | |
| 3076 | /* if a socket is bound to a device, check that the given device |
| 3077 | * index is either the same or that the socket is bound to an L3 |
| 3078 | * master device and the given device index is also enslaved to |
| 3079 | * that L3 master |
| 3080 | */ |
| 3081 | static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) |
| 3082 | { |
| 3083 | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
| 3084 | int mdif; |
| 3085 | |
| 3086 | if (!bound_dev_if || bound_dev_if == dif) |
| 3087 | return true; |
| 3088 | |
| 3089 | mdif = l3mdev_master_ifindex_by_index(net: sock_net(sk), ifindex: dif); |
| 3090 | if (mdif && mdif == bound_dev_if) |
| 3091 | return true; |
| 3092 | |
| 3093 | return false; |
| 3094 | } |
| 3095 | |
| 3096 | void sock_def_readable(struct sock *sk); |
| 3097 | |
| 3098 | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); |
| 3099 | void sock_set_timestamp(struct sock *sk, int optname, bool valbool); |
| 3100 | int sock_set_timestamping(struct sock *sk, int optname, |
| 3101 | struct so_timestamping timestamping); |
| 3102 | |
| 3103 | #if defined(CONFIG_CGROUP_BPF) |
| 3104 | void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op); |
| 3105 | #else |
| 3106 | static inline void bpf_skops_tx_timestamping(struct sock *sk, struct sk_buff *skb, int op) |
| 3107 | { |
| 3108 | } |
| 3109 | #endif |
| 3110 | void sock_no_linger(struct sock *sk); |
| 3111 | void sock_set_keepalive(struct sock *sk); |
| 3112 | void sock_set_priority(struct sock *sk, u32 priority); |
| 3113 | void sock_set_rcvbuf(struct sock *sk, int val); |
| 3114 | void sock_set_mark(struct sock *sk, u32 val); |
| 3115 | void sock_set_reuseaddr(struct sock *sk); |
| 3116 | void sock_set_reuseport(struct sock *sk); |
| 3117 | void sock_set_sndtimeo(struct sock *sk, s64 secs); |
| 3118 | |
| 3119 | int sock_bind_add(struct sock *sk, struct sockaddr_unsized *addr, int addr_len); |
| 3120 | |
| 3121 | int sock_get_timeout(long timeo, void *optval, bool old_timeval); |
| 3122 | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
| 3123 | sockptr_t optval, int optlen, bool old_timeval); |
| 3124 | |
| 3125 | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, |
| 3126 | void __user *arg, void *karg, size_t size); |
| 3127 | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); |
| 3128 | static inline bool sk_is_readable(struct sock *sk) |
| 3129 | { |
| 3130 | const struct proto *prot = READ_ONCE(sk->sk_prot); |
| 3131 | |
| 3132 | if (prot->sock_is_readable) |
| 3133 | return prot->sock_is_readable(sk); |
| 3134 | |
| 3135 | return false; |
| 3136 | } |
| 3137 | #endif /* _SOCK_H */ |
| 3138 | |