| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_MM_H |
| 3 | #define _LINUX_MM_H |
| 4 | |
| 5 | #include <linux/errno.h> |
| 6 | #include <linux/mmdebug.h> |
| 7 | #include <linux/gfp.h> |
| 8 | #include <linux/pgalloc_tag.h> |
| 9 | #include <linux/bug.h> |
| 10 | #include <linux/list.h> |
| 11 | #include <linux/mmzone.h> |
| 12 | #include <linux/rbtree.h> |
| 13 | #include <linux/atomic.h> |
| 14 | #include <linux/debug_locks.h> |
| 15 | #include <linux/compiler.h> |
| 16 | #include <linux/mm_types.h> |
| 17 | #include <linux/mmap_lock.h> |
| 18 | #include <linux/range.h> |
| 19 | #include <linux/pfn.h> |
| 20 | #include <linux/percpu-refcount.h> |
| 21 | #include <linux/bit_spinlock.h> |
| 22 | #include <linux/shrinker.h> |
| 23 | #include <linux/resource.h> |
| 24 | #include <linux/page_ext.h> |
| 25 | #include <linux/err.h> |
| 26 | #include <linux/page-flags.h> |
| 27 | #include <linux/page_ref.h> |
| 28 | #include <linux/overflow.h> |
| 29 | #include <linux/sizes.h> |
| 30 | #include <linux/sched.h> |
| 31 | #include <linux/pgtable.h> |
| 32 | #include <linux/kasan.h> |
| 33 | #include <linux/memremap.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/cacheinfo.h> |
| 36 | #include <linux/rcuwait.h> |
| 37 | #include <linux/bitmap.h> |
| 38 | #include <linux/bitops.h> |
| 39 | |
| 40 | struct mempolicy; |
| 41 | struct anon_vma; |
| 42 | struct anon_vma_chain; |
| 43 | struct user_struct; |
| 44 | struct pt_regs; |
| 45 | struct folio_batch; |
| 46 | |
| 47 | void arch_mm_preinit(void); |
| 48 | void mm_core_init(void); |
| 49 | void init_mm_internals(void); |
| 50 | |
| 51 | extern atomic_long_t _totalram_pages; |
| 52 | static inline unsigned long totalram_pages(void) |
| 53 | { |
| 54 | return (unsigned long)atomic_long_read(v: &_totalram_pages); |
| 55 | } |
| 56 | |
| 57 | static inline void totalram_pages_inc(void) |
| 58 | { |
| 59 | atomic_long_inc(v: &_totalram_pages); |
| 60 | } |
| 61 | |
| 62 | static inline void totalram_pages_dec(void) |
| 63 | { |
| 64 | atomic_long_dec(v: &_totalram_pages); |
| 65 | } |
| 66 | |
| 67 | static inline void totalram_pages_add(long count) |
| 68 | { |
| 69 | atomic_long_add(i: count, v: &_totalram_pages); |
| 70 | } |
| 71 | |
| 72 | extern void * high_memory; |
| 73 | |
| 74 | /* |
| 75 | * Convert between pages and MB |
| 76 | * 20 is the shift for 1MB (2^20 = 1MB) |
| 77 | * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages) |
| 78 | * So (20 - PAGE_SHIFT) converts between pages and MB |
| 79 | */ |
| 80 | #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT)) |
| 81 | #define MB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) |
| 82 | |
| 83 | #ifdef CONFIG_SYSCTL |
| 84 | extern int sysctl_legacy_va_layout; |
| 85 | #else |
| 86 | #define sysctl_legacy_va_layout 0 |
| 87 | #endif |
| 88 | |
| 89 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
| 90 | extern const int mmap_rnd_bits_min; |
| 91 | extern int mmap_rnd_bits_max __ro_after_init; |
| 92 | extern int mmap_rnd_bits __read_mostly; |
| 93 | #endif |
| 94 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
| 95 | extern const int mmap_rnd_compat_bits_min; |
| 96 | extern const int mmap_rnd_compat_bits_max; |
| 97 | extern int mmap_rnd_compat_bits __read_mostly; |
| 98 | #endif |
| 99 | |
| 100 | #ifndef DIRECT_MAP_PHYSMEM_END |
| 101 | # ifdef MAX_PHYSMEM_BITS |
| 102 | # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) |
| 103 | # else |
| 104 | # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) |
| 105 | # endif |
| 106 | #endif |
| 107 | |
| 108 | #define INVALID_PHYS_ADDR (~(phys_addr_t)0) |
| 109 | |
| 110 | #include <asm/page.h> |
| 111 | #include <asm/processor.h> |
| 112 | |
| 113 | #ifndef __pa_symbol |
| 114 | #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) |
| 115 | #endif |
| 116 | |
| 117 | #ifndef page_to_virt |
| 118 | #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) |
| 119 | #endif |
| 120 | |
| 121 | #ifndef lm_alias |
| 122 | #define lm_alias(x) __va(__pa_symbol(x)) |
| 123 | #endif |
| 124 | |
| 125 | /* |
| 126 | * To prevent common memory management code establishing |
| 127 | * a zero page mapping on a read fault. |
| 128 | * This macro should be defined within <asm/pgtable.h>. |
| 129 | * s390 does this to prevent multiplexing of hardware bits |
| 130 | * related to the physical page in case of virtualization. |
| 131 | */ |
| 132 | #ifndef mm_forbids_zeropage |
| 133 | #define mm_forbids_zeropage(X) (0) |
| 134 | #endif |
| 135 | |
| 136 | /* |
| 137 | * On some architectures it is expensive to call memset() for small sizes. |
| 138 | * If an architecture decides to implement their own version of |
| 139 | * mm_zero_struct_page they should wrap the defines below in a #ifndef and |
| 140 | * define their own version of this macro in <asm/pgtable.h> |
| 141 | */ |
| 142 | #if BITS_PER_LONG == 64 |
| 143 | /* This function must be updated when the size of struct page grows above 96 |
| 144 | * or reduces below 56. The idea that compiler optimizes out switch() |
| 145 | * statement, and only leaves move/store instructions. Also the compiler can |
| 146 | * combine write statements if they are both assignments and can be reordered, |
| 147 | * this can result in several of the writes here being dropped. |
| 148 | */ |
| 149 | #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) |
| 150 | static inline void __mm_zero_struct_page(struct page *page) |
| 151 | { |
| 152 | unsigned long *_pp = (void *)page; |
| 153 | |
| 154 | /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ |
| 155 | BUILD_BUG_ON(sizeof(struct page) & 7); |
| 156 | BUILD_BUG_ON(sizeof(struct page) < 56); |
| 157 | BUILD_BUG_ON(sizeof(struct page) > 96); |
| 158 | |
| 159 | switch (sizeof(struct page)) { |
| 160 | case 96: |
| 161 | _pp[11] = 0; |
| 162 | fallthrough; |
| 163 | case 88: |
| 164 | _pp[10] = 0; |
| 165 | fallthrough; |
| 166 | case 80: |
| 167 | _pp[9] = 0; |
| 168 | fallthrough; |
| 169 | case 72: |
| 170 | _pp[8] = 0; |
| 171 | fallthrough; |
| 172 | case 64: |
| 173 | _pp[7] = 0; |
| 174 | fallthrough; |
| 175 | case 56: |
| 176 | _pp[6] = 0; |
| 177 | _pp[5] = 0; |
| 178 | _pp[4] = 0; |
| 179 | _pp[3] = 0; |
| 180 | _pp[2] = 0; |
| 181 | _pp[1] = 0; |
| 182 | _pp[0] = 0; |
| 183 | } |
| 184 | } |
| 185 | #else |
| 186 | #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) |
| 187 | #endif |
| 188 | |
| 189 | /* |
| 190 | * Default maximum number of active map areas, this limits the number of vmas |
| 191 | * per mm struct. Users can overwrite this number by sysctl but there is a |
| 192 | * problem. |
| 193 | * |
| 194 | * When a program's coredump is generated as ELF format, a section is created |
| 195 | * per a vma. In ELF, the number of sections is represented in unsigned short. |
| 196 | * This means the number of sections should be smaller than 65535 at coredump. |
| 197 | * Because the kernel adds some informative sections to a image of program at |
| 198 | * generating coredump, we need some margin. The number of extra sections is |
| 199 | * 1-3 now and depends on arch. We use "5" as safe margin, here. |
| 200 | * |
| 201 | * ELF extended numbering allows more than 65535 sections, so 16-bit bound is |
| 202 | * not a hard limit any more. Although some userspace tools can be surprised by |
| 203 | * that. |
| 204 | */ |
| 205 | #define MAPCOUNT_ELF_CORE_MARGIN (5) |
| 206 | #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) |
| 207 | |
| 208 | extern int sysctl_max_map_count; |
| 209 | |
| 210 | extern unsigned long sysctl_user_reserve_kbytes; |
| 211 | extern unsigned long sysctl_admin_reserve_kbytes; |
| 212 | |
| 213 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| 214 | bool page_range_contiguous(const struct page *page, unsigned long nr_pages); |
| 215 | #else |
| 216 | static inline bool page_range_contiguous(const struct page *page, |
| 217 | unsigned long nr_pages) |
| 218 | { |
| 219 | return true; |
| 220 | } |
| 221 | #endif |
| 222 | |
| 223 | /* to align the pointer to the (next) page boundary */ |
| 224 | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) |
| 225 | |
| 226 | /* to align the pointer to the (prev) page boundary */ |
| 227 | #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) |
| 228 | |
| 229 | /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ |
| 230 | #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) |
| 231 | |
| 232 | /** |
| 233 | * folio_page_idx - Return the number of a page in a folio. |
| 234 | * @folio: The folio. |
| 235 | * @page: The folio page. |
| 236 | * |
| 237 | * This function expects that the page is actually part of the folio. |
| 238 | * The returned number is relative to the start of the folio. |
| 239 | */ |
| 240 | static inline unsigned long folio_page_idx(const struct folio *folio, |
| 241 | const struct page *page) |
| 242 | { |
| 243 | return page - &folio->page; |
| 244 | } |
| 245 | |
| 246 | static inline struct folio *lru_to_folio(struct list_head *head) |
| 247 | { |
| 248 | return list_entry((head)->prev, struct folio, lru); |
| 249 | } |
| 250 | |
| 251 | void setup_initial_init_mm(void *start_code, void *end_code, |
| 252 | void *end_data, void *brk); |
| 253 | |
| 254 | /* |
| 255 | * Linux kernel virtual memory manager primitives. |
| 256 | * The idea being to have a "virtual" mm in the same way |
| 257 | * we have a virtual fs - giving a cleaner interface to the |
| 258 | * mm details, and allowing different kinds of memory mappings |
| 259 | * (from shared memory to executable loading to arbitrary |
| 260 | * mmap() functions). |
| 261 | */ |
| 262 | |
| 263 | struct vm_area_struct *vm_area_alloc(struct mm_struct *); |
| 264 | struct vm_area_struct *vm_area_dup(struct vm_area_struct *); |
| 265 | void vm_area_free(struct vm_area_struct *); |
| 266 | |
| 267 | #ifndef CONFIG_MMU |
| 268 | extern struct rb_root nommu_region_tree; |
| 269 | extern struct rw_semaphore nommu_region_sem; |
| 270 | |
| 271 | extern unsigned int kobjsize(const void *objp); |
| 272 | #endif |
| 273 | |
| 274 | /* |
| 275 | * vm_flags in vm_area_struct, see mm_types.h. |
| 276 | * When changing, update also include/trace/events/mmflags.h |
| 277 | */ |
| 278 | |
| 279 | #define VM_NONE 0x00000000 |
| 280 | |
| 281 | /** |
| 282 | * typedef vma_flag_t - specifies an individual VMA flag by bit number. |
| 283 | * |
| 284 | * This value is made type safe by sparse to avoid passing invalid flag values |
| 285 | * around. |
| 286 | */ |
| 287 | typedef int __bitwise vma_flag_t; |
| 288 | |
| 289 | #define DECLARE_VMA_BIT(name, bitnum) \ |
| 290 | VMA_ ## name ## _BIT = ((__force vma_flag_t)bitnum) |
| 291 | #define DECLARE_VMA_BIT_ALIAS(name, aliased) \ |
| 292 | VMA_ ## name ## _BIT = (VMA_ ## aliased ## _BIT) |
| 293 | enum { |
| 294 | DECLARE_VMA_BIT(READ, 0), |
| 295 | DECLARE_VMA_BIT(WRITE, 1), |
| 296 | DECLARE_VMA_BIT(EXEC, 2), |
| 297 | DECLARE_VMA_BIT(SHARED, 3), |
| 298 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
| 299 | DECLARE_VMA_BIT(MAYREAD, 4), /* limits for mprotect() etc. */ |
| 300 | DECLARE_VMA_BIT(MAYWRITE, 5), |
| 301 | DECLARE_VMA_BIT(MAYEXEC, 6), |
| 302 | DECLARE_VMA_BIT(MAYSHARE, 7), |
| 303 | DECLARE_VMA_BIT(GROWSDOWN, 8), /* general info on the segment */ |
| 304 | #ifdef CONFIG_MMU |
| 305 | DECLARE_VMA_BIT(UFFD_MISSING, 9),/* missing pages tracking */ |
| 306 | #else |
| 307 | /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ |
| 308 | DECLARE_VMA_BIT(MAYOVERLAY, 9), |
| 309 | #endif /* CONFIG_MMU */ |
| 310 | /* Page-ranges managed without "struct page", just pure PFN */ |
| 311 | DECLARE_VMA_BIT(PFNMAP, 10), |
| 312 | DECLARE_VMA_BIT(MAYBE_GUARD, 11), |
| 313 | DECLARE_VMA_BIT(UFFD_WP, 12), /* wrprotect pages tracking */ |
| 314 | DECLARE_VMA_BIT(LOCKED, 13), |
| 315 | DECLARE_VMA_BIT(IO, 14), /* Memory mapped I/O or similar */ |
| 316 | DECLARE_VMA_BIT(SEQ_READ, 15), /* App will access data sequentially */ |
| 317 | DECLARE_VMA_BIT(RAND_READ, 16), /* App will not benefit from clustered reads */ |
| 318 | DECLARE_VMA_BIT(DONTCOPY, 17), /* Do not copy this vma on fork */ |
| 319 | DECLARE_VMA_BIT(DONTEXPAND, 18),/* Cannot expand with mremap() */ |
| 320 | DECLARE_VMA_BIT(LOCKONFAULT, 19),/* Lock pages covered when faulted in */ |
| 321 | DECLARE_VMA_BIT(ACCOUNT, 20), /* Is a VM accounted object */ |
| 322 | DECLARE_VMA_BIT(NORESERVE, 21), /* should the VM suppress accounting */ |
| 323 | DECLARE_VMA_BIT(HUGETLB, 22), /* Huge TLB Page VM */ |
| 324 | DECLARE_VMA_BIT(SYNC, 23), /* Synchronous page faults */ |
| 325 | DECLARE_VMA_BIT(ARCH_1, 24), /* Architecture-specific flag */ |
| 326 | DECLARE_VMA_BIT(WIPEONFORK, 25),/* Wipe VMA contents in child. */ |
| 327 | DECLARE_VMA_BIT(DONTDUMP, 26), /* Do not include in the core dump */ |
| 328 | DECLARE_VMA_BIT(SOFTDIRTY, 27), /* NOT soft dirty clean area */ |
| 329 | DECLARE_VMA_BIT(MIXEDMAP, 28), /* Can contain struct page and pure PFN pages */ |
| 330 | DECLARE_VMA_BIT(HUGEPAGE, 29), /* MADV_HUGEPAGE marked this vma */ |
| 331 | DECLARE_VMA_BIT(NOHUGEPAGE, 30),/* MADV_NOHUGEPAGE marked this vma */ |
| 332 | DECLARE_VMA_BIT(MERGEABLE, 31), /* KSM may merge identical pages */ |
| 333 | /* These bits are reused, we define specific uses below. */ |
| 334 | DECLARE_VMA_BIT(HIGH_ARCH_0, 32), |
| 335 | DECLARE_VMA_BIT(HIGH_ARCH_1, 33), |
| 336 | DECLARE_VMA_BIT(HIGH_ARCH_2, 34), |
| 337 | DECLARE_VMA_BIT(HIGH_ARCH_3, 35), |
| 338 | DECLARE_VMA_BIT(HIGH_ARCH_4, 36), |
| 339 | DECLARE_VMA_BIT(HIGH_ARCH_5, 37), |
| 340 | DECLARE_VMA_BIT(HIGH_ARCH_6, 38), |
| 341 | /* |
| 342 | * This flag is used to connect VFIO to arch specific KVM code. It |
| 343 | * indicates that the memory under this VMA is safe for use with any |
| 344 | * non-cachable memory type inside KVM. Some VFIO devices, on some |
| 345 | * platforms, are thought to be unsafe and can cause machine crashes |
| 346 | * if KVM does not lock down the memory type. |
| 347 | */ |
| 348 | DECLARE_VMA_BIT(ALLOW_ANY_UNCACHED, 39), |
| 349 | #ifdef CONFIG_PPC32 |
| 350 | DECLARE_VMA_BIT_ALIAS(DROPPABLE, ARCH_1), |
| 351 | #else |
| 352 | DECLARE_VMA_BIT(DROPPABLE, 40), |
| 353 | #endif |
| 354 | DECLARE_VMA_BIT(UFFD_MINOR, 41), |
| 355 | DECLARE_VMA_BIT(SEALED, 42), |
| 356 | /* Flags that reuse flags above. */ |
| 357 | DECLARE_VMA_BIT_ALIAS(PKEY_BIT0, HIGH_ARCH_0), |
| 358 | DECLARE_VMA_BIT_ALIAS(PKEY_BIT1, HIGH_ARCH_1), |
| 359 | DECLARE_VMA_BIT_ALIAS(PKEY_BIT2, HIGH_ARCH_2), |
| 360 | DECLARE_VMA_BIT_ALIAS(PKEY_BIT3, HIGH_ARCH_3), |
| 361 | DECLARE_VMA_BIT_ALIAS(PKEY_BIT4, HIGH_ARCH_4), |
| 362 | #if defined(CONFIG_X86_USER_SHADOW_STACK) |
| 363 | /* |
| 364 | * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of |
| 365 | * support core mm. |
| 366 | * |
| 367 | * These VMAs will get a single end guard page. This helps userspace |
| 368 | * protect itself from attacks. A single page is enough for current |
| 369 | * shadow stack archs (x86). See the comments near alloc_shstk() in |
| 370 | * arch/x86/kernel/shstk.c for more details on the guard size. |
| 371 | */ |
| 372 | DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_5), |
| 373 | #elif defined(CONFIG_ARM64_GCS) |
| 374 | /* |
| 375 | * arm64's Guarded Control Stack implements similar functionality and |
| 376 | * has similar constraints to shadow stacks. |
| 377 | */ |
| 378 | DECLARE_VMA_BIT_ALIAS(SHADOW_STACK, HIGH_ARCH_6), |
| 379 | #endif |
| 380 | DECLARE_VMA_BIT_ALIAS(SAO, ARCH_1), /* Strong Access Ordering (powerpc) */ |
| 381 | DECLARE_VMA_BIT_ALIAS(GROWSUP, ARCH_1), /* parisc */ |
| 382 | DECLARE_VMA_BIT_ALIAS(SPARC_ADI, ARCH_1), /* sparc64 */ |
| 383 | DECLARE_VMA_BIT_ALIAS(ARM64_BTI, ARCH_1), /* arm64 */ |
| 384 | DECLARE_VMA_BIT_ALIAS(ARCH_CLEAR, ARCH_1), /* sparc64, arm64 */ |
| 385 | DECLARE_VMA_BIT_ALIAS(MAPPED_COPY, ARCH_1), /* !CONFIG_MMU */ |
| 386 | DECLARE_VMA_BIT_ALIAS(MTE, HIGH_ARCH_4), /* arm64 */ |
| 387 | DECLARE_VMA_BIT_ALIAS(MTE_ALLOWED, HIGH_ARCH_5),/* arm64 */ |
| 388 | #ifdef CONFIG_STACK_GROWSUP |
| 389 | DECLARE_VMA_BIT_ALIAS(STACK, GROWSUP), |
| 390 | DECLARE_VMA_BIT_ALIAS(STACK_EARLY, GROWSDOWN), |
| 391 | #else |
| 392 | DECLARE_VMA_BIT_ALIAS(STACK, GROWSDOWN), |
| 393 | #endif |
| 394 | }; |
| 395 | #undef DECLARE_VMA_BIT |
| 396 | #undef DECLARE_VMA_BIT_ALIAS |
| 397 | |
| 398 | #define INIT_VM_FLAG(name) BIT((__force int) VMA_ ## name ## _BIT) |
| 399 | #define VM_READ INIT_VM_FLAG(READ) |
| 400 | #define VM_WRITE INIT_VM_FLAG(WRITE) |
| 401 | #define VM_EXEC INIT_VM_FLAG(EXEC) |
| 402 | #define VM_SHARED INIT_VM_FLAG(SHARED) |
| 403 | #define VM_MAYREAD INIT_VM_FLAG(MAYREAD) |
| 404 | #define VM_MAYWRITE INIT_VM_FLAG(MAYWRITE) |
| 405 | #define VM_MAYEXEC INIT_VM_FLAG(MAYEXEC) |
| 406 | #define VM_MAYSHARE INIT_VM_FLAG(MAYSHARE) |
| 407 | #define VM_GROWSDOWN INIT_VM_FLAG(GROWSDOWN) |
| 408 | #ifdef CONFIG_MMU |
| 409 | #define VM_UFFD_MISSING INIT_VM_FLAG(UFFD_MISSING) |
| 410 | #else |
| 411 | #define VM_UFFD_MISSING VM_NONE |
| 412 | #define VM_MAYOVERLAY INIT_VM_FLAG(MAYOVERLAY) |
| 413 | #endif |
| 414 | #define VM_PFNMAP INIT_VM_FLAG(PFNMAP) |
| 415 | #define VM_MAYBE_GUARD INIT_VM_FLAG(MAYBE_GUARD) |
| 416 | #define VM_UFFD_WP INIT_VM_FLAG(UFFD_WP) |
| 417 | #define VM_LOCKED INIT_VM_FLAG(LOCKED) |
| 418 | #define VM_IO INIT_VM_FLAG(IO) |
| 419 | #define VM_SEQ_READ INIT_VM_FLAG(SEQ_READ) |
| 420 | #define VM_RAND_READ INIT_VM_FLAG(RAND_READ) |
| 421 | #define VM_DONTCOPY INIT_VM_FLAG(DONTCOPY) |
| 422 | #define VM_DONTEXPAND INIT_VM_FLAG(DONTEXPAND) |
| 423 | #define VM_LOCKONFAULT INIT_VM_FLAG(LOCKONFAULT) |
| 424 | #define VM_ACCOUNT INIT_VM_FLAG(ACCOUNT) |
| 425 | #define VM_NORESERVE INIT_VM_FLAG(NORESERVE) |
| 426 | #define VM_HUGETLB INIT_VM_FLAG(HUGETLB) |
| 427 | #define VM_SYNC INIT_VM_FLAG(SYNC) |
| 428 | #define VM_ARCH_1 INIT_VM_FLAG(ARCH_1) |
| 429 | #define VM_WIPEONFORK INIT_VM_FLAG(WIPEONFORK) |
| 430 | #define VM_DONTDUMP INIT_VM_FLAG(DONTDUMP) |
| 431 | #ifdef CONFIG_MEM_SOFT_DIRTY |
| 432 | #define VM_SOFTDIRTY INIT_VM_FLAG(SOFTDIRTY) |
| 433 | #else |
| 434 | #define VM_SOFTDIRTY VM_NONE |
| 435 | #endif |
| 436 | #define VM_MIXEDMAP INIT_VM_FLAG(MIXEDMAP) |
| 437 | #define VM_HUGEPAGE INIT_VM_FLAG(HUGEPAGE) |
| 438 | #define VM_NOHUGEPAGE INIT_VM_FLAG(NOHUGEPAGE) |
| 439 | #define VM_MERGEABLE INIT_VM_FLAG(MERGEABLE) |
| 440 | #define VM_STACK INIT_VM_FLAG(STACK) |
| 441 | #ifdef CONFIG_STACK_GROWSUP |
| 442 | #define VM_STACK_EARLY INIT_VM_FLAG(STACK_EARLY) |
| 443 | #else |
| 444 | #define VM_STACK_EARLY VM_NONE |
| 445 | #endif |
| 446 | #ifdef CONFIG_ARCH_HAS_PKEYS |
| 447 | #define VM_PKEY_SHIFT ((__force int)VMA_HIGH_ARCH_0_BIT) |
| 448 | /* Despite the naming, these are FLAGS not bits. */ |
| 449 | #define VM_PKEY_BIT0 INIT_VM_FLAG(PKEY_BIT0) |
| 450 | #define VM_PKEY_BIT1 INIT_VM_FLAG(PKEY_BIT1) |
| 451 | #define VM_PKEY_BIT2 INIT_VM_FLAG(PKEY_BIT2) |
| 452 | #if CONFIG_ARCH_PKEY_BITS > 3 |
| 453 | #define VM_PKEY_BIT3 INIT_VM_FLAG(PKEY_BIT3) |
| 454 | #else |
| 455 | #define VM_PKEY_BIT3 VM_NONE |
| 456 | #endif /* CONFIG_ARCH_PKEY_BITS > 3 */ |
| 457 | #if CONFIG_ARCH_PKEY_BITS > 4 |
| 458 | #define VM_PKEY_BIT4 INIT_VM_FLAG(PKEY_BIT4) |
| 459 | #else |
| 460 | #define VM_PKEY_BIT4 VM_NONE |
| 461 | #endif /* CONFIG_ARCH_PKEY_BITS > 4 */ |
| 462 | #endif /* CONFIG_ARCH_HAS_PKEYS */ |
| 463 | #if defined(CONFIG_X86_USER_SHADOW_STACK) || defined(CONFIG_ARM64_GCS) |
| 464 | #define VM_SHADOW_STACK INIT_VM_FLAG(SHADOW_STACK) |
| 465 | #else |
| 466 | #define VM_SHADOW_STACK VM_NONE |
| 467 | #endif |
| 468 | #if defined(CONFIG_PPC64) |
| 469 | #define VM_SAO INIT_VM_FLAG(SAO) |
| 470 | #elif defined(CONFIG_PARISC) |
| 471 | #define VM_GROWSUP INIT_VM_FLAG(GROWSUP) |
| 472 | #elif defined(CONFIG_SPARC64) |
| 473 | #define VM_SPARC_ADI INIT_VM_FLAG(SPARC_ADI) |
| 474 | #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) |
| 475 | #elif defined(CONFIG_ARM64) |
| 476 | #define VM_ARM64_BTI INIT_VM_FLAG(ARM64_BTI) |
| 477 | #define VM_ARCH_CLEAR INIT_VM_FLAG(ARCH_CLEAR) |
| 478 | #elif !defined(CONFIG_MMU) |
| 479 | #define VM_MAPPED_COPY INIT_VM_FLAG(MAPPED_COPY) |
| 480 | #endif |
| 481 | #ifndef VM_GROWSUP |
| 482 | #define VM_GROWSUP VM_NONE |
| 483 | #endif |
| 484 | #ifdef CONFIG_ARM64_MTE |
| 485 | #define VM_MTE INIT_VM_FLAG(MTE) |
| 486 | #define VM_MTE_ALLOWED INIT_VM_FLAG(MTE_ALLOWED) |
| 487 | #else |
| 488 | #define VM_MTE VM_NONE |
| 489 | #define VM_MTE_ALLOWED VM_NONE |
| 490 | #endif |
| 491 | #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
| 492 | #define VM_UFFD_MINOR INIT_VM_FLAG(UFFD_MINOR) |
| 493 | #else |
| 494 | #define VM_UFFD_MINOR VM_NONE |
| 495 | #endif |
| 496 | #ifdef CONFIG_64BIT |
| 497 | #define VM_ALLOW_ANY_UNCACHED INIT_VM_FLAG(ALLOW_ANY_UNCACHED) |
| 498 | #define VM_SEALED INIT_VM_FLAG(SEALED) |
| 499 | #else |
| 500 | #define VM_ALLOW_ANY_UNCACHED VM_NONE |
| 501 | #define VM_SEALED VM_NONE |
| 502 | #endif |
| 503 | #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32) |
| 504 | #define VM_DROPPABLE INIT_VM_FLAG(DROPPABLE) |
| 505 | #else |
| 506 | #define VM_DROPPABLE VM_NONE |
| 507 | #endif |
| 508 | |
| 509 | /* Bits set in the VMA until the stack is in its final location */ |
| 510 | #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) |
| 511 | |
| 512 | #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) |
| 513 | |
| 514 | /* Common data flag combinations */ |
| 515 | #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ |
| 516 | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| 517 | #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ |
| 518 | VM_MAYWRITE | VM_MAYEXEC) |
| 519 | #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ |
| 520 | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| 521 | |
| 522 | #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ |
| 523 | #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC |
| 524 | #endif |
| 525 | |
| 526 | #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
| 527 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
| 528 | #endif |
| 529 | |
| 530 | #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) |
| 531 | |
| 532 | #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS |
| 533 | #define VM_SEALED_SYSMAP VM_SEALED |
| 534 | #else |
| 535 | #define VM_SEALED_SYSMAP VM_NONE |
| 536 | #endif |
| 537 | |
| 538 | #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| 539 | |
| 540 | /* VMA basic access permission flags */ |
| 541 | #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) |
| 542 | |
| 543 | /* |
| 544 | * Special vmas that are non-mergable, non-mlock()able. |
| 545 | */ |
| 546 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) |
| 547 | |
| 548 | /* |
| 549 | * Physically remapped pages are special. Tell the |
| 550 | * rest of the world about it: |
| 551 | * VM_IO tells people not to look at these pages |
| 552 | * (accesses can have side effects). |
| 553 | * VM_PFNMAP tells the core MM that the base pages are just |
| 554 | * raw PFN mappings, and do not have a "struct page" associated |
| 555 | * with them. |
| 556 | * VM_DONTEXPAND |
| 557 | * Disable vma merging and expanding with mremap(). |
| 558 | * VM_DONTDUMP |
| 559 | * Omit vma from core dump, even when VM_IO turned off. |
| 560 | */ |
| 561 | #define VM_REMAP_FLAGS (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP) |
| 562 | |
| 563 | /* This mask prevents VMA from being scanned with khugepaged */ |
| 564 | #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) |
| 565 | |
| 566 | /* This mask defines which mm->def_flags a process can inherit its parent */ |
| 567 | #define VM_INIT_DEF_MASK VM_NOHUGEPAGE |
| 568 | |
| 569 | /* This mask represents all the VMA flag bits used by mlock */ |
| 570 | #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) |
| 571 | |
| 572 | /* These flags can be updated atomically via VMA/mmap read lock. */ |
| 573 | #define VM_ATOMIC_SET_ALLOWED VM_MAYBE_GUARD |
| 574 | |
| 575 | /* Arch-specific flags to clear when updating VM flags on protection change */ |
| 576 | #ifndef VM_ARCH_CLEAR |
| 577 | #define VM_ARCH_CLEAR VM_NONE |
| 578 | #endif |
| 579 | #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) |
| 580 | |
| 581 | /* |
| 582 | * Flags which should be 'sticky' on merge - that is, flags which, when one VMA |
| 583 | * possesses it but the other does not, the merged VMA should nonetheless have |
| 584 | * applied to it: |
| 585 | * |
| 586 | * VM_SOFTDIRTY - if a VMA is marked soft-dirty, that is has not had its |
| 587 | * references cleared via /proc/$pid/clear_refs, any merged VMA |
| 588 | * should be considered soft-dirty also as it operates at a VMA |
| 589 | * granularity. |
| 590 | * |
| 591 | * VM_MAYBE_GUARD - If a VMA may have guard regions in place it implies that |
| 592 | * mapped page tables may contain metadata not described by the |
| 593 | * VMA and thus any merged VMA may also contain this metadata, |
| 594 | * and thus we must make this flag sticky. |
| 595 | */ |
| 596 | #define VM_STICKY (VM_SOFTDIRTY | VM_MAYBE_GUARD) |
| 597 | |
| 598 | /* |
| 599 | * VMA flags we ignore for the purposes of merge, i.e. one VMA possessing one |
| 600 | * of these flags and the other not does not preclude a merge. |
| 601 | * |
| 602 | * VM_STICKY - When merging VMAs, VMA flags must match, unless they are |
| 603 | * 'sticky'. If any sticky flags exist in either VMA, we simply |
| 604 | * set all of them on the merged VMA. |
| 605 | */ |
| 606 | #define VM_IGNORE_MERGE VM_STICKY |
| 607 | |
| 608 | /* |
| 609 | * Flags which should result in page tables being copied on fork. These are |
| 610 | * flags which indicate that the VMA maps page tables which cannot be |
| 611 | * reconsistuted upon page fault, so necessitate page table copying upon fork. |
| 612 | * |
| 613 | * Note that these flags should be compared with the DESTINATION VMA not the |
| 614 | * source, as VM_UFFD_WP may not be propagated to destination, while all other |
| 615 | * flags will be. |
| 616 | * |
| 617 | * VM_PFNMAP / VM_MIXEDMAP - These contain kernel-mapped data which cannot be |
| 618 | * reasonably reconstructed on page fault. |
| 619 | * |
| 620 | * VM_UFFD_WP - Encodes metadata about an installed uffd |
| 621 | * write protect handler, which cannot be |
| 622 | * reconstructed on page fault. |
| 623 | * |
| 624 | * We always copy pgtables when dst_vma has uffd-wp |
| 625 | * enabled even if it's file-backed |
| 626 | * (e.g. shmem). Because when uffd-wp is enabled, |
| 627 | * pgtable contains uffd-wp protection information, |
| 628 | * that's something we can't retrieve from page cache, |
| 629 | * and skip copying will lose those info. |
| 630 | * |
| 631 | * VM_MAYBE_GUARD - Could contain page guard region markers which |
| 632 | * by design are a property of the page tables |
| 633 | * only and thus cannot be reconstructed on page |
| 634 | * fault. |
| 635 | */ |
| 636 | #define VM_COPY_ON_FORK (VM_PFNMAP | VM_MIXEDMAP | VM_UFFD_WP | VM_MAYBE_GUARD) |
| 637 | |
| 638 | /* |
| 639 | * mapping from the currently active vm_flags protection bits (the |
| 640 | * low four bits) to a page protection mask.. |
| 641 | */ |
| 642 | |
| 643 | /* |
| 644 | * The default fault flags that should be used by most of the |
| 645 | * arch-specific page fault handlers. |
| 646 | */ |
| 647 | #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ |
| 648 | FAULT_FLAG_KILLABLE | \ |
| 649 | FAULT_FLAG_INTERRUPTIBLE) |
| 650 | |
| 651 | /** |
| 652 | * fault_flag_allow_retry_first - check ALLOW_RETRY the first time |
| 653 | * @flags: Fault flags. |
| 654 | * |
| 655 | * This is mostly used for places where we want to try to avoid taking |
| 656 | * the mmap_lock for too long a time when waiting for another condition |
| 657 | * to change, in which case we can try to be polite to release the |
| 658 | * mmap_lock in the first round to avoid potential starvation of other |
| 659 | * processes that would also want the mmap_lock. |
| 660 | * |
| 661 | * Return: true if the page fault allows retry and this is the first |
| 662 | * attempt of the fault handling; false otherwise. |
| 663 | */ |
| 664 | static inline bool fault_flag_allow_retry_first(enum fault_flag flags) |
| 665 | { |
| 666 | return (flags & FAULT_FLAG_ALLOW_RETRY) && |
| 667 | (!(flags & FAULT_FLAG_TRIED)); |
| 668 | } |
| 669 | |
| 670 | #define FAULT_FLAG_TRACE \ |
| 671 | { FAULT_FLAG_WRITE, "WRITE" }, \ |
| 672 | { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ |
| 673 | { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ |
| 674 | { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ |
| 675 | { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ |
| 676 | { FAULT_FLAG_TRIED, "TRIED" }, \ |
| 677 | { FAULT_FLAG_USER, "USER" }, \ |
| 678 | { FAULT_FLAG_REMOTE, "REMOTE" }, \ |
| 679 | { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ |
| 680 | { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ |
| 681 | { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } |
| 682 | |
| 683 | /* |
| 684 | * vm_fault is filled by the pagefault handler and passed to the vma's |
| 685 | * ->fault function. The vma's ->fault is responsible for returning a bitmask |
| 686 | * of VM_FAULT_xxx flags that give details about how the fault was handled. |
| 687 | * |
| 688 | * MM layer fills up gfp_mask for page allocations but fault handler might |
| 689 | * alter it if its implementation requires a different allocation context. |
| 690 | * |
| 691 | * pgoff should be used in favour of virtual_address, if possible. |
| 692 | */ |
| 693 | struct vm_fault { |
| 694 | const struct { |
| 695 | struct vm_area_struct *vma; /* Target VMA */ |
| 696 | gfp_t gfp_mask; /* gfp mask to be used for allocations */ |
| 697 | pgoff_t pgoff; /* Logical page offset based on vma */ |
| 698 | unsigned long address; /* Faulting virtual address - masked */ |
| 699 | unsigned long real_address; /* Faulting virtual address - unmasked */ |
| 700 | }; |
| 701 | enum fault_flag flags; /* FAULT_FLAG_xxx flags |
| 702 | * XXX: should really be 'const' */ |
| 703 | pmd_t *pmd; /* Pointer to pmd entry matching |
| 704 | * the 'address' */ |
| 705 | pud_t *pud; /* Pointer to pud entry matching |
| 706 | * the 'address' |
| 707 | */ |
| 708 | union { |
| 709 | pte_t orig_pte; /* Value of PTE at the time of fault */ |
| 710 | pmd_t orig_pmd; /* Value of PMD at the time of fault, |
| 711 | * used by PMD fault only. |
| 712 | */ |
| 713 | }; |
| 714 | |
| 715 | struct page *cow_page; /* Page handler may use for COW fault */ |
| 716 | struct page *page; /* ->fault handlers should return a |
| 717 | * page here, unless VM_FAULT_NOPAGE |
| 718 | * is set (which is also implied by |
| 719 | * VM_FAULT_ERROR). |
| 720 | */ |
| 721 | /* These three entries are valid only while holding ptl lock */ |
| 722 | pte_t *pte; /* Pointer to pte entry matching |
| 723 | * the 'address'. NULL if the page |
| 724 | * table hasn't been allocated. |
| 725 | */ |
| 726 | spinlock_t *ptl; /* Page table lock. |
| 727 | * Protects pte page table if 'pte' |
| 728 | * is not NULL, otherwise pmd. |
| 729 | */ |
| 730 | pgtable_t prealloc_pte; /* Pre-allocated pte page table. |
| 731 | * vm_ops->map_pages() sets up a page |
| 732 | * table from atomic context. |
| 733 | * do_fault_around() pre-allocates |
| 734 | * page table to avoid allocation from |
| 735 | * atomic context. |
| 736 | */ |
| 737 | }; |
| 738 | |
| 739 | /* |
| 740 | * These are the virtual MM functions - opening of an area, closing and |
| 741 | * unmapping it (needed to keep files on disk up-to-date etc), pointer |
| 742 | * to the functions called when a no-page or a wp-page exception occurs. |
| 743 | */ |
| 744 | struct vm_operations_struct { |
| 745 | void (*open)(struct vm_area_struct * area); |
| 746 | /** |
| 747 | * @close: Called when the VMA is being removed from the MM. |
| 748 | * Context: User context. May sleep. Caller holds mmap_lock. |
| 749 | */ |
| 750 | void (*close)(struct vm_area_struct * area); |
| 751 | /* Called any time before splitting to check if it's allowed */ |
| 752 | int (*may_split)(struct vm_area_struct *area, unsigned long addr); |
| 753 | int (*mremap)(struct vm_area_struct *area); |
| 754 | /* |
| 755 | * Called by mprotect() to make driver-specific permission |
| 756 | * checks before mprotect() is finalised. The VMA must not |
| 757 | * be modified. Returns 0 if mprotect() can proceed. |
| 758 | */ |
| 759 | int (*mprotect)(struct vm_area_struct *vma, unsigned long start, |
| 760 | unsigned long end, unsigned long newflags); |
| 761 | vm_fault_t (*fault)(struct vm_fault *vmf); |
| 762 | vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); |
| 763 | vm_fault_t (*map_pages)(struct vm_fault *vmf, |
| 764 | pgoff_t start_pgoff, pgoff_t end_pgoff); |
| 765 | unsigned long (*pagesize)(struct vm_area_struct * area); |
| 766 | |
| 767 | /* notification that a previously read-only page is about to become |
| 768 | * writable, if an error is returned it will cause a SIGBUS */ |
| 769 | vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); |
| 770 | |
| 771 | /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ |
| 772 | vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); |
| 773 | |
| 774 | /* called by access_process_vm when get_user_pages() fails, typically |
| 775 | * for use by special VMAs. See also generic_access_phys() for a generic |
| 776 | * implementation useful for any iomem mapping. |
| 777 | */ |
| 778 | int (*access)(struct vm_area_struct *vma, unsigned long addr, |
| 779 | void *buf, int len, int write); |
| 780 | |
| 781 | /* Called by the /proc/PID/maps code to ask the vma whether it |
| 782 | * has a special name. Returning non-NULL will also cause this |
| 783 | * vma to be dumped unconditionally. */ |
| 784 | const char *(*name)(struct vm_area_struct *vma); |
| 785 | |
| 786 | #ifdef CONFIG_NUMA |
| 787 | /* |
| 788 | * set_policy() op must add a reference to any non-NULL @new mempolicy |
| 789 | * to hold the policy upon return. Caller should pass NULL @new to |
| 790 | * remove a policy and fall back to surrounding context--i.e. do not |
| 791 | * install a MPOL_DEFAULT policy, nor the task or system default |
| 792 | * mempolicy. |
| 793 | */ |
| 794 | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
| 795 | |
| 796 | /* |
| 797 | * get_policy() op must add reference [mpol_get()] to any policy at |
| 798 | * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure |
| 799 | * in mm/mempolicy.c will do this automatically. |
| 800 | * get_policy() must NOT add a ref if the policy at (vma,addr) is not |
| 801 | * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. |
| 802 | * If no [shared/vma] mempolicy exists at the addr, get_policy() op |
| 803 | * must return NULL--i.e., do not "fallback" to task or system default |
| 804 | * policy. |
| 805 | */ |
| 806 | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
| 807 | unsigned long addr, pgoff_t *ilx); |
| 808 | #endif |
| 809 | #ifdef CONFIG_FIND_NORMAL_PAGE |
| 810 | /* |
| 811 | * Called by vm_normal_page() for special PTEs in @vma at @addr. This |
| 812 | * allows for returning a "normal" page from vm_normal_page() even |
| 813 | * though the PTE indicates that the "struct page" either does not exist |
| 814 | * or should not be touched: "special". |
| 815 | * |
| 816 | * Do not add new users: this really only works when a "normal" page |
| 817 | * was mapped, but then the PTE got changed to something weird (+ |
| 818 | * marked special) that would not make pte_pfn() identify the originally |
| 819 | * inserted page. |
| 820 | */ |
| 821 | struct page *(*find_normal_page)(struct vm_area_struct *vma, |
| 822 | unsigned long addr); |
| 823 | #endif /* CONFIG_FIND_NORMAL_PAGE */ |
| 824 | }; |
| 825 | |
| 826 | #ifdef CONFIG_NUMA_BALANCING |
| 827 | static inline void vma_numab_state_init(struct vm_area_struct *vma) |
| 828 | { |
| 829 | vma->numab_state = NULL; |
| 830 | } |
| 831 | static inline void vma_numab_state_free(struct vm_area_struct *vma) |
| 832 | { |
| 833 | kfree(objp: vma->numab_state); |
| 834 | } |
| 835 | #else |
| 836 | static inline void vma_numab_state_init(struct vm_area_struct *vma) {} |
| 837 | static inline void vma_numab_state_free(struct vm_area_struct *vma) {} |
| 838 | #endif /* CONFIG_NUMA_BALANCING */ |
| 839 | |
| 840 | /* |
| 841 | * These must be here rather than mmap_lock.h as dependent on vm_fault type, |
| 842 | * declared in this header. |
| 843 | */ |
| 844 | #ifdef CONFIG_PER_VMA_LOCK |
| 845 | static inline void release_fault_lock(struct vm_fault *vmf) |
| 846 | { |
| 847 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) |
| 848 | vma_end_read(vma: vmf->vma); |
| 849 | else |
| 850 | mmap_read_unlock(mm: vmf->vma->vm_mm); |
| 851 | } |
| 852 | |
| 853 | static inline void assert_fault_locked(const struct vm_fault *vmf) |
| 854 | { |
| 855 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) |
| 856 | vma_assert_locked(vma: vmf->vma); |
| 857 | else |
| 858 | mmap_assert_locked(mm: vmf->vma->vm_mm); |
| 859 | } |
| 860 | #else |
| 861 | static inline void release_fault_lock(struct vm_fault *vmf) |
| 862 | { |
| 863 | mmap_read_unlock(vmf->vma->vm_mm); |
| 864 | } |
| 865 | |
| 866 | static inline void assert_fault_locked(const struct vm_fault *vmf) |
| 867 | { |
| 868 | mmap_assert_locked(vmf->vma->vm_mm); |
| 869 | } |
| 870 | #endif /* CONFIG_PER_VMA_LOCK */ |
| 871 | |
| 872 | static inline bool mm_flags_test(int flag, const struct mm_struct *mm) |
| 873 | { |
| 874 | return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); |
| 875 | } |
| 876 | |
| 877 | static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm) |
| 878 | { |
| 879 | return test_and_set_bit(nr: flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); |
| 880 | } |
| 881 | |
| 882 | static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm) |
| 883 | { |
| 884 | return test_and_clear_bit(nr: flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); |
| 885 | } |
| 886 | |
| 887 | static inline void mm_flags_set(int flag, struct mm_struct *mm) |
| 888 | { |
| 889 | set_bit(nr: flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); |
| 890 | } |
| 891 | |
| 892 | static inline void mm_flags_clear(int flag, struct mm_struct *mm) |
| 893 | { |
| 894 | clear_bit(nr: flag, ACCESS_PRIVATE(&mm->flags, __mm_flags)); |
| 895 | } |
| 896 | |
| 897 | static inline void mm_flags_clear_all(struct mm_struct *mm) |
| 898 | { |
| 899 | bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS); |
| 900 | } |
| 901 | |
| 902 | extern const struct vm_operations_struct vma_dummy_vm_ops; |
| 903 | |
| 904 | static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) |
| 905 | { |
| 906 | memset(vma, 0, sizeof(*vma)); |
| 907 | vma->vm_mm = mm; |
| 908 | vma->vm_ops = &vma_dummy_vm_ops; |
| 909 | INIT_LIST_HEAD(list: &vma->anon_vma_chain); |
| 910 | vma_lock_init(vma, reset_refcnt: false); |
| 911 | } |
| 912 | |
| 913 | /* Use when VMA is not part of the VMA tree and needs no locking */ |
| 914 | static inline void vm_flags_init(struct vm_area_struct *vma, |
| 915 | vm_flags_t flags) |
| 916 | { |
| 917 | VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); |
| 918 | vma_flags_clear_all(flags: &vma->flags); |
| 919 | vma_flags_overwrite_word(flags: &vma->flags, value: flags); |
| 920 | } |
| 921 | |
| 922 | /* |
| 923 | * Use when VMA is part of the VMA tree and modifications need coordination |
| 924 | * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and |
| 925 | * it should be locked explicitly beforehand. |
| 926 | */ |
| 927 | static inline void vm_flags_reset(struct vm_area_struct *vma, |
| 928 | vm_flags_t flags) |
| 929 | { |
| 930 | VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); |
| 931 | vma_assert_write_locked(vma); |
| 932 | vm_flags_init(vma, flags); |
| 933 | } |
| 934 | |
| 935 | static inline void vm_flags_reset_once(struct vm_area_struct *vma, |
| 936 | vm_flags_t flags) |
| 937 | { |
| 938 | vma_assert_write_locked(vma); |
| 939 | /* |
| 940 | * If VMA flags exist beyond the first system word, also clear these. It |
| 941 | * is assumed the write once behaviour is required only for the first |
| 942 | * system word. |
| 943 | */ |
| 944 | if (NUM_VMA_FLAG_BITS > BITS_PER_LONG) { |
| 945 | unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); |
| 946 | |
| 947 | bitmap_zero(dst: &bitmap[1], NUM_VMA_FLAG_BITS - BITS_PER_LONG); |
| 948 | } |
| 949 | |
| 950 | vma_flags_overwrite_word_once(flags: &vma->flags, value: flags); |
| 951 | } |
| 952 | |
| 953 | static inline void vm_flags_set(struct vm_area_struct *vma, |
| 954 | vm_flags_t flags) |
| 955 | { |
| 956 | vma_start_write(vma); |
| 957 | vma_flags_set_word(flags: &vma->flags, value: flags); |
| 958 | } |
| 959 | |
| 960 | static inline void vm_flags_clear(struct vm_area_struct *vma, |
| 961 | vm_flags_t flags) |
| 962 | { |
| 963 | VM_WARN_ON_ONCE(!pgtable_supports_soft_dirty() && (flags & VM_SOFTDIRTY)); |
| 964 | vma_start_write(vma); |
| 965 | vma_flags_clear_word(flags: &vma->flags, value: flags); |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | * Use only if VMA is not part of the VMA tree or has no other users and |
| 970 | * therefore needs no locking. |
| 971 | */ |
| 972 | static inline void __vm_flags_mod(struct vm_area_struct *vma, |
| 973 | vm_flags_t set, vm_flags_t clear) |
| 974 | { |
| 975 | vm_flags_init(vma, flags: (vma->vm_flags | set) & ~clear); |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * Use only when the order of set/clear operations is unimportant, otherwise |
| 980 | * use vm_flags_{set|clear} explicitly. |
| 981 | */ |
| 982 | static inline void vm_flags_mod(struct vm_area_struct *vma, |
| 983 | vm_flags_t set, vm_flags_t clear) |
| 984 | { |
| 985 | vma_start_write(vma); |
| 986 | __vm_flags_mod(vma, set, clear); |
| 987 | } |
| 988 | |
| 989 | static inline bool __vma_flag_atomic_valid(struct vm_area_struct *vma, |
| 990 | vma_flag_t bit) |
| 991 | { |
| 992 | const vm_flags_t mask = BIT((__force int)bit); |
| 993 | |
| 994 | /* Only specific flags are permitted */ |
| 995 | if (WARN_ON_ONCE(!(mask & VM_ATOMIC_SET_ALLOWED))) |
| 996 | return false; |
| 997 | |
| 998 | return true; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Set VMA flag atomically. Requires only VMA/mmap read lock. Only specific |
| 1003 | * valid flags are allowed to do this. |
| 1004 | */ |
| 1005 | static inline void vma_flag_set_atomic(struct vm_area_struct *vma, |
| 1006 | vma_flag_t bit) |
| 1007 | { |
| 1008 | unsigned long *bitmap = ACCESS_PRIVATE(&vma->flags, __vma_flags); |
| 1009 | |
| 1010 | /* mmap read lock/VMA read lock must be held. */ |
| 1011 | if (!rwsem_is_locked(sem: &vma->vm_mm->mmap_lock)) |
| 1012 | vma_assert_locked(vma); |
| 1013 | |
| 1014 | if (__vma_flag_atomic_valid(vma, bit)) |
| 1015 | set_bit(nr: (__force int)bit, addr: bitmap); |
| 1016 | } |
| 1017 | |
| 1018 | /* |
| 1019 | * Test for VMA flag atomically. Requires no locks. Only specific valid flags |
| 1020 | * are allowed to do this. |
| 1021 | * |
| 1022 | * This is necessarily racey, so callers must ensure that serialisation is |
| 1023 | * achieved through some other means, or that races are permissible. |
| 1024 | */ |
| 1025 | static inline bool vma_flag_test_atomic(struct vm_area_struct *vma, |
| 1026 | vma_flag_t bit) |
| 1027 | { |
| 1028 | if (__vma_flag_atomic_valid(vma, bit)) |
| 1029 | return test_bit((__force int)bit, &vma->vm_flags); |
| 1030 | |
| 1031 | return false; |
| 1032 | } |
| 1033 | |
| 1034 | static inline void vma_set_anonymous(struct vm_area_struct *vma) |
| 1035 | { |
| 1036 | vma->vm_ops = NULL; |
| 1037 | } |
| 1038 | |
| 1039 | static inline bool vma_is_anonymous(struct vm_area_struct *vma) |
| 1040 | { |
| 1041 | return !vma->vm_ops; |
| 1042 | } |
| 1043 | |
| 1044 | /* |
| 1045 | * Indicate if the VMA is a heap for the given task; for |
| 1046 | * /proc/PID/maps that is the heap of the main task. |
| 1047 | */ |
| 1048 | static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) |
| 1049 | { |
| 1050 | return vma->vm_start < vma->vm_mm->brk && |
| 1051 | vma->vm_end > vma->vm_mm->start_brk; |
| 1052 | } |
| 1053 | |
| 1054 | /* |
| 1055 | * Indicate if the VMA is a stack for the given task; for |
| 1056 | * /proc/PID/maps that is the stack of the main task. |
| 1057 | */ |
| 1058 | static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) |
| 1059 | { |
| 1060 | /* |
| 1061 | * We make no effort to guess what a given thread considers to be |
| 1062 | * its "stack". It's not even well-defined for programs written |
| 1063 | * languages like Go. |
| 1064 | */ |
| 1065 | return vma->vm_start <= vma->vm_mm->start_stack && |
| 1066 | vma->vm_end >= vma->vm_mm->start_stack; |
| 1067 | } |
| 1068 | |
| 1069 | static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma) |
| 1070 | { |
| 1071 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
| 1072 | |
| 1073 | if (!maybe_stack) |
| 1074 | return false; |
| 1075 | |
| 1076 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == |
| 1077 | VM_STACK_INCOMPLETE_SETUP) |
| 1078 | return true; |
| 1079 | |
| 1080 | return false; |
| 1081 | } |
| 1082 | |
| 1083 | static inline bool vma_is_foreign(const struct vm_area_struct *vma) |
| 1084 | { |
| 1085 | if (!current->mm) |
| 1086 | return true; |
| 1087 | |
| 1088 | if (current->mm != vma->vm_mm) |
| 1089 | return true; |
| 1090 | |
| 1091 | return false; |
| 1092 | } |
| 1093 | |
| 1094 | static inline bool vma_is_accessible(const struct vm_area_struct *vma) |
| 1095 | { |
| 1096 | return vma->vm_flags & VM_ACCESS_FLAGS; |
| 1097 | } |
| 1098 | |
| 1099 | static inline bool is_shared_maywrite(vm_flags_t vm_flags) |
| 1100 | { |
| 1101 | return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == |
| 1102 | (VM_SHARED | VM_MAYWRITE); |
| 1103 | } |
| 1104 | |
| 1105 | static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma) |
| 1106 | { |
| 1107 | return is_shared_maywrite(vm_flags: vma->vm_flags); |
| 1108 | } |
| 1109 | |
| 1110 | static inline |
| 1111 | struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) |
| 1112 | { |
| 1113 | return mas_find(mas: &vmi->mas, max: max - 1); |
| 1114 | } |
| 1115 | |
| 1116 | static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) |
| 1117 | { |
| 1118 | /* |
| 1119 | * Uses mas_find() to get the first VMA when the iterator starts. |
| 1120 | * Calling mas_next() could skip the first entry. |
| 1121 | */ |
| 1122 | return mas_find(mas: &vmi->mas, ULONG_MAX); |
| 1123 | } |
| 1124 | |
| 1125 | static inline |
| 1126 | struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) |
| 1127 | { |
| 1128 | return mas_next_range(mas: &vmi->mas, ULONG_MAX); |
| 1129 | } |
| 1130 | |
| 1131 | |
| 1132 | static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) |
| 1133 | { |
| 1134 | return mas_prev(mas: &vmi->mas, min: 0); |
| 1135 | } |
| 1136 | |
| 1137 | static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, |
| 1138 | unsigned long start, unsigned long end, gfp_t gfp) |
| 1139 | { |
| 1140 | __mas_set_range(mas: &vmi->mas, start, last: end - 1); |
| 1141 | mas_store_gfp(mas: &vmi->mas, NULL, gfp); |
| 1142 | if (unlikely(mas_is_err(&vmi->mas))) |
| 1143 | return -ENOMEM; |
| 1144 | |
| 1145 | return 0; |
| 1146 | } |
| 1147 | |
| 1148 | /* Free any unused preallocations */ |
| 1149 | static inline void vma_iter_free(struct vma_iterator *vmi) |
| 1150 | { |
| 1151 | mas_destroy(mas: &vmi->mas); |
| 1152 | } |
| 1153 | |
| 1154 | static inline int vma_iter_bulk_store(struct vma_iterator *vmi, |
| 1155 | struct vm_area_struct *vma) |
| 1156 | { |
| 1157 | vmi->mas.index = vma->vm_start; |
| 1158 | vmi->mas.last = vma->vm_end - 1; |
| 1159 | mas_store(mas: &vmi->mas, entry: vma); |
| 1160 | if (unlikely(mas_is_err(&vmi->mas))) |
| 1161 | return -ENOMEM; |
| 1162 | |
| 1163 | vma_mark_attached(vma); |
| 1164 | return 0; |
| 1165 | } |
| 1166 | |
| 1167 | static inline void vma_iter_invalidate(struct vma_iterator *vmi) |
| 1168 | { |
| 1169 | mas_pause(mas: &vmi->mas); |
| 1170 | } |
| 1171 | |
| 1172 | static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) |
| 1173 | { |
| 1174 | mas_set(mas: &vmi->mas, index: addr); |
| 1175 | } |
| 1176 | |
| 1177 | #define for_each_vma(__vmi, __vma) \ |
| 1178 | while (((__vma) = vma_next(&(__vmi))) != NULL) |
| 1179 | |
| 1180 | /* The MM code likes to work with exclusive end addresses */ |
| 1181 | #define for_each_vma_range(__vmi, __vma, __end) \ |
| 1182 | while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) |
| 1183 | |
| 1184 | #ifdef CONFIG_SHMEM |
| 1185 | /* |
| 1186 | * The vma_is_shmem is not inline because it is used only by slow |
| 1187 | * paths in userfault. |
| 1188 | */ |
| 1189 | bool vma_is_shmem(const struct vm_area_struct *vma); |
| 1190 | bool vma_is_anon_shmem(const struct vm_area_struct *vma); |
| 1191 | #else |
| 1192 | static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; } |
| 1193 | static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; } |
| 1194 | #endif |
| 1195 | |
| 1196 | int vma_is_stack_for_current(const struct vm_area_struct *vma); |
| 1197 | |
| 1198 | /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ |
| 1199 | #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } |
| 1200 | |
| 1201 | struct mmu_gather; |
| 1202 | struct inode; |
| 1203 | |
| 1204 | extern void prep_compound_page(struct page *page, unsigned int order); |
| 1205 | |
| 1206 | static inline unsigned int folio_large_order(const struct folio *folio) |
| 1207 | { |
| 1208 | return folio->_flags_1 & 0xff; |
| 1209 | } |
| 1210 | |
| 1211 | #ifdef NR_PAGES_IN_LARGE_FOLIO |
| 1212 | static inline unsigned long folio_large_nr_pages(const struct folio *folio) |
| 1213 | { |
| 1214 | return folio->_nr_pages; |
| 1215 | } |
| 1216 | #else |
| 1217 | static inline unsigned long folio_large_nr_pages(const struct folio *folio) |
| 1218 | { |
| 1219 | return 1L << folio_large_order(folio); |
| 1220 | } |
| 1221 | #endif |
| 1222 | |
| 1223 | /* |
| 1224 | * compound_order() can be called without holding a reference, which means |
| 1225 | * that niceties like page_folio() don't work. These callers should be |
| 1226 | * prepared to handle wild return values. For example, PG_head may be |
| 1227 | * set before the order is initialised, or this may be a tail page. |
| 1228 | * See compaction.c for some good examples. |
| 1229 | */ |
| 1230 | static inline unsigned int compound_order(const struct page *page) |
| 1231 | { |
| 1232 | const struct folio *folio = (struct folio *)page; |
| 1233 | |
| 1234 | if (!test_bit(PG_head, &folio->flags.f)) |
| 1235 | return 0; |
| 1236 | return folio_large_order(folio); |
| 1237 | } |
| 1238 | |
| 1239 | /** |
| 1240 | * folio_order - The allocation order of a folio. |
| 1241 | * @folio: The folio. |
| 1242 | * |
| 1243 | * A folio is composed of 2^order pages. See get_order() for the definition |
| 1244 | * of order. |
| 1245 | * |
| 1246 | * Return: The order of the folio. |
| 1247 | */ |
| 1248 | static inline unsigned int folio_order(const struct folio *folio) |
| 1249 | { |
| 1250 | if (!folio_test_large(folio)) |
| 1251 | return 0; |
| 1252 | return folio_large_order(folio); |
| 1253 | } |
| 1254 | |
| 1255 | /** |
| 1256 | * folio_reset_order - Reset the folio order and derived _nr_pages |
| 1257 | * @folio: The folio. |
| 1258 | * |
| 1259 | * Reset the order and derived _nr_pages to 0. Must only be used in the |
| 1260 | * process of splitting large folios. |
| 1261 | */ |
| 1262 | static inline void folio_reset_order(struct folio *folio) |
| 1263 | { |
| 1264 | if (WARN_ON_ONCE(!folio_test_large(folio))) |
| 1265 | return; |
| 1266 | folio->_flags_1 &= ~0xffUL; |
| 1267 | #ifdef NR_PAGES_IN_LARGE_FOLIO |
| 1268 | folio->_nr_pages = 0; |
| 1269 | #endif |
| 1270 | } |
| 1271 | |
| 1272 | #include <linux/huge_mm.h> |
| 1273 | |
| 1274 | /* |
| 1275 | * Methods to modify the page usage count. |
| 1276 | * |
| 1277 | * What counts for a page usage: |
| 1278 | * - cache mapping (page->mapping) |
| 1279 | * - private data (page->private) |
| 1280 | * - page mapped in a task's page tables, each mapping |
| 1281 | * is counted separately |
| 1282 | * |
| 1283 | * Also, many kernel routines increase the page count before a critical |
| 1284 | * routine so they can be sure the page doesn't go away from under them. |
| 1285 | */ |
| 1286 | |
| 1287 | /* |
| 1288 | * Drop a ref, return true if the refcount fell to zero (the page has no users) |
| 1289 | */ |
| 1290 | static inline int put_page_testzero(struct page *page) |
| 1291 | { |
| 1292 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); |
| 1293 | return page_ref_dec_and_test(page); |
| 1294 | } |
| 1295 | |
| 1296 | static inline int folio_put_testzero(struct folio *folio) |
| 1297 | { |
| 1298 | return put_page_testzero(page: &folio->page); |
| 1299 | } |
| 1300 | |
| 1301 | /* |
| 1302 | * Try to grab a ref unless the page has a refcount of zero, return false if |
| 1303 | * that is the case. |
| 1304 | * This can be called when MMU is off so it must not access |
| 1305 | * any of the virtual mappings. |
| 1306 | */ |
| 1307 | static inline bool get_page_unless_zero(struct page *page) |
| 1308 | { |
| 1309 | return page_ref_add_unless(page, nr: 1, u: 0); |
| 1310 | } |
| 1311 | |
| 1312 | static inline struct folio *folio_get_nontail_page(struct page *page) |
| 1313 | { |
| 1314 | if (unlikely(!get_page_unless_zero(page))) |
| 1315 | return NULL; |
| 1316 | return (struct folio *)page; |
| 1317 | } |
| 1318 | |
| 1319 | extern int page_is_ram(unsigned long pfn); |
| 1320 | |
| 1321 | enum { |
| 1322 | REGION_INTERSECTS, |
| 1323 | REGION_DISJOINT, |
| 1324 | REGION_MIXED, |
| 1325 | }; |
| 1326 | |
| 1327 | int region_intersects(resource_size_t offset, size_t size, unsigned long flags, |
| 1328 | unsigned long desc); |
| 1329 | |
| 1330 | /* Support for virtually mapped pages */ |
| 1331 | struct page *vmalloc_to_page(const void *addr); |
| 1332 | unsigned long vmalloc_to_pfn(const void *addr); |
| 1333 | |
| 1334 | /* |
| 1335 | * Determine if an address is within the vmalloc range |
| 1336 | * |
| 1337 | * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there |
| 1338 | * is no special casing required. |
| 1339 | */ |
| 1340 | #ifdef CONFIG_MMU |
| 1341 | extern bool is_vmalloc_addr(const void *x); |
| 1342 | extern int is_vmalloc_or_module_addr(const void *x); |
| 1343 | #else |
| 1344 | static inline bool is_vmalloc_addr(const void *x) |
| 1345 | { |
| 1346 | return false; |
| 1347 | } |
| 1348 | static inline int is_vmalloc_or_module_addr(const void *x) |
| 1349 | { |
| 1350 | return 0; |
| 1351 | } |
| 1352 | #endif |
| 1353 | |
| 1354 | /* |
| 1355 | * How many times the entire folio is mapped as a single unit (eg by a |
| 1356 | * PMD or PUD entry). This is probably not what you want, except for |
| 1357 | * debugging purposes or implementation of other core folio_*() primitives. |
| 1358 | */ |
| 1359 | static inline int folio_entire_mapcount(const struct folio *folio) |
| 1360 | { |
| 1361 | VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
| 1362 | if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) |
| 1363 | return 0; |
| 1364 | return atomic_read(v: &folio->_entire_mapcount) + 1; |
| 1365 | } |
| 1366 | |
| 1367 | static inline int folio_large_mapcount(const struct folio *folio) |
| 1368 | { |
| 1369 | VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); |
| 1370 | return atomic_read(v: &folio->_large_mapcount) + 1; |
| 1371 | } |
| 1372 | |
| 1373 | /** |
| 1374 | * folio_mapcount() - Number of mappings of this folio. |
| 1375 | * @folio: The folio. |
| 1376 | * |
| 1377 | * The folio mapcount corresponds to the number of present user page table |
| 1378 | * entries that reference any part of a folio. Each such present user page |
| 1379 | * table entry must be paired with exactly on folio reference. |
| 1380 | * |
| 1381 | * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts |
| 1382 | * exactly once. |
| 1383 | * |
| 1384 | * For hugetlb folios, each abstracted "hugetlb" user page table entry that |
| 1385 | * references the entire folio counts exactly once, even when such special |
| 1386 | * page table entries are comprised of multiple ordinary page table entries. |
| 1387 | * |
| 1388 | * Will report 0 for pages which cannot be mapped into userspace, such as |
| 1389 | * slab, page tables and similar. |
| 1390 | * |
| 1391 | * Return: The number of times this folio is mapped. |
| 1392 | */ |
| 1393 | static inline int folio_mapcount(const struct folio *folio) |
| 1394 | { |
| 1395 | int mapcount; |
| 1396 | |
| 1397 | if (likely(!folio_test_large(folio))) { |
| 1398 | mapcount = atomic_read(v: &folio->_mapcount) + 1; |
| 1399 | if (page_mapcount_is_type(mapcount)) |
| 1400 | mapcount = 0; |
| 1401 | return mapcount; |
| 1402 | } |
| 1403 | return folio_large_mapcount(folio); |
| 1404 | } |
| 1405 | |
| 1406 | /** |
| 1407 | * folio_mapped - Is this folio mapped into userspace? |
| 1408 | * @folio: The folio. |
| 1409 | * |
| 1410 | * Return: True if any page in this folio is referenced by user page tables. |
| 1411 | */ |
| 1412 | static inline bool folio_mapped(const struct folio *folio) |
| 1413 | { |
| 1414 | return folio_mapcount(folio) >= 1; |
| 1415 | } |
| 1416 | |
| 1417 | /* |
| 1418 | * Return true if this page is mapped into pagetables. |
| 1419 | * For compound page it returns true if any sub-page of compound page is mapped, |
| 1420 | * even if this particular sub-page is not itself mapped by any PTE or PMD. |
| 1421 | */ |
| 1422 | static inline bool page_mapped(const struct page *page) |
| 1423 | { |
| 1424 | return folio_mapped(page_folio(page)); |
| 1425 | } |
| 1426 | |
| 1427 | static inline struct page *virt_to_head_page(const void *x) |
| 1428 | { |
| 1429 | struct page *page = virt_to_page(x); |
| 1430 | |
| 1431 | return compound_head(page); |
| 1432 | } |
| 1433 | |
| 1434 | static inline struct folio *virt_to_folio(const void *x) |
| 1435 | { |
| 1436 | struct page *page = virt_to_page(x); |
| 1437 | |
| 1438 | return page_folio(page); |
| 1439 | } |
| 1440 | |
| 1441 | void __folio_put(struct folio *folio); |
| 1442 | |
| 1443 | void split_page(struct page *page, unsigned int order); |
| 1444 | void folio_copy(struct folio *dst, struct folio *src); |
| 1445 | int folio_mc_copy(struct folio *dst, struct folio *src); |
| 1446 | |
| 1447 | unsigned long nr_free_buffer_pages(void); |
| 1448 | |
| 1449 | /* Returns the number of bytes in this potentially compound page. */ |
| 1450 | static inline unsigned long page_size(const struct page *page) |
| 1451 | { |
| 1452 | return PAGE_SIZE << compound_order(page); |
| 1453 | } |
| 1454 | |
| 1455 | /* Returns the number of bits needed for the number of bytes in a page */ |
| 1456 | static inline unsigned int page_shift(struct page *page) |
| 1457 | { |
| 1458 | return PAGE_SHIFT + compound_order(page); |
| 1459 | } |
| 1460 | |
| 1461 | /** |
| 1462 | * thp_order - Order of a transparent huge page. |
| 1463 | * @page: Head page of a transparent huge page. |
| 1464 | */ |
| 1465 | static inline unsigned int thp_order(struct page *page) |
| 1466 | { |
| 1467 | VM_BUG_ON_PGFLAGS(PageTail(page), page); |
| 1468 | return compound_order(page); |
| 1469 | } |
| 1470 | |
| 1471 | /** |
| 1472 | * thp_size - Size of a transparent huge page. |
| 1473 | * @page: Head page of a transparent huge page. |
| 1474 | * |
| 1475 | * Return: Number of bytes in this page. |
| 1476 | */ |
| 1477 | static inline unsigned long thp_size(struct page *page) |
| 1478 | { |
| 1479 | return PAGE_SIZE << thp_order(page); |
| 1480 | } |
| 1481 | |
| 1482 | #ifdef CONFIG_MMU |
| 1483 | /* |
| 1484 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
| 1485 | * servicing faults for write access. In the normal case, do always want |
| 1486 | * pte_mkwrite. But get_user_pages can cause write faults for mappings |
| 1487 | * that do not have writing enabled, when used by access_process_vm. |
| 1488 | */ |
| 1489 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| 1490 | { |
| 1491 | if (likely(vma->vm_flags & VM_WRITE)) |
| 1492 | pte = pte_mkwrite(pte, vma); |
| 1493 | return pte; |
| 1494 | } |
| 1495 | |
| 1496 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); |
| 1497 | void set_pte_range(struct vm_fault *vmf, struct folio *folio, |
| 1498 | struct page *page, unsigned int nr, unsigned long addr); |
| 1499 | |
| 1500 | vm_fault_t finish_fault(struct vm_fault *vmf); |
| 1501 | #endif |
| 1502 | |
| 1503 | /* |
| 1504 | * Multiple processes may "see" the same page. E.g. for untouched |
| 1505 | * mappings of /dev/null, all processes see the same page full of |
| 1506 | * zeroes, and text pages of executables and shared libraries have |
| 1507 | * only one copy in memory, at most, normally. |
| 1508 | * |
| 1509 | * For the non-reserved pages, page_count(page) denotes a reference count. |
| 1510 | * page_count() == 0 means the page is free. page->lru is then used for |
| 1511 | * freelist management in the buddy allocator. |
| 1512 | * page_count() > 0 means the page has been allocated. |
| 1513 | * |
| 1514 | * Pages are allocated by the slab allocator in order to provide memory |
| 1515 | * to kmalloc and kmem_cache_alloc. In this case, the management of the |
| 1516 | * page, and the fields in 'struct page' are the responsibility of mm/slab.c |
| 1517 | * unless a particular usage is carefully commented. (the responsibility of |
| 1518 | * freeing the kmalloc memory is the caller's, of course). |
| 1519 | * |
| 1520 | * A page may be used by anyone else who does a __get_free_page(). |
| 1521 | * In this case, page_count still tracks the references, and should only |
| 1522 | * be used through the normal accessor functions. The top bits of page->flags |
| 1523 | * and page->virtual store page management information, but all other fields |
| 1524 | * are unused and could be used privately, carefully. The management of this |
| 1525 | * page is the responsibility of the one who allocated it, and those who have |
| 1526 | * subsequently been given references to it. |
| 1527 | * |
| 1528 | * The other pages (we may call them "pagecache pages") are completely |
| 1529 | * managed by the Linux memory manager: I/O, buffers, swapping etc. |
| 1530 | * The following discussion applies only to them. |
| 1531 | * |
| 1532 | * A pagecache page contains an opaque `private' member, which belongs to the |
| 1533 | * page's address_space. Usually, this is the address of a circular list of |
| 1534 | * the page's disk buffers. PG_private must be set to tell the VM to call |
| 1535 | * into the filesystem to release these pages. |
| 1536 | * |
| 1537 | * A folio may belong to an inode's memory mapping. In this case, |
| 1538 | * folio->mapping points to the inode, and folio->index is the file |
| 1539 | * offset of the folio, in units of PAGE_SIZE. |
| 1540 | * |
| 1541 | * If pagecache pages are not associated with an inode, they are said to be |
| 1542 | * anonymous pages. These may become associated with the swapcache, and in that |
| 1543 | * case PG_swapcache is set, and page->private is an offset into the swapcache. |
| 1544 | * |
| 1545 | * In either case (swapcache or inode backed), the pagecache itself holds one |
| 1546 | * reference to the page. Setting PG_private should also increment the |
| 1547 | * refcount. The each user mapping also has a reference to the page. |
| 1548 | * |
| 1549 | * The pagecache pages are stored in a per-mapping radix tree, which is |
| 1550 | * rooted at mapping->i_pages, and indexed by offset. |
| 1551 | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space |
| 1552 | * lists, we instead now tag pages as dirty/writeback in the radix tree. |
| 1553 | * |
| 1554 | * All pagecache pages may be subject to I/O: |
| 1555 | * - inode pages may need to be read from disk, |
| 1556 | * - inode pages which have been modified and are MAP_SHARED may need |
| 1557 | * to be written back to the inode on disk, |
| 1558 | * - anonymous pages (including MAP_PRIVATE file mappings) which have been |
| 1559 | * modified may need to be swapped out to swap space and (later) to be read |
| 1560 | * back into memory. |
| 1561 | */ |
| 1562 | |
| 1563 | /* 127: arbitrary random number, small enough to assemble well */ |
| 1564 | #define folio_ref_zero_or_close_to_overflow(folio) \ |
| 1565 | ((unsigned int) folio_ref_count(folio) + 127u <= 127u) |
| 1566 | |
| 1567 | /** |
| 1568 | * folio_get - Increment the reference count on a folio. |
| 1569 | * @folio: The folio. |
| 1570 | * |
| 1571 | * Context: May be called in any context, as long as you know that |
| 1572 | * you have a refcount on the folio. If you do not already have one, |
| 1573 | * folio_try_get() may be the right interface for you to use. |
| 1574 | */ |
| 1575 | static inline void folio_get(struct folio *folio) |
| 1576 | { |
| 1577 | VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); |
| 1578 | folio_ref_inc(folio); |
| 1579 | } |
| 1580 | |
| 1581 | static inline void get_page(struct page *page) |
| 1582 | { |
| 1583 | struct folio *folio = page_folio(page); |
| 1584 | if (WARN_ON_ONCE(folio_test_slab(folio))) |
| 1585 | return; |
| 1586 | if (WARN_ON_ONCE(folio_test_large_kmalloc(folio))) |
| 1587 | return; |
| 1588 | folio_get(folio); |
| 1589 | } |
| 1590 | |
| 1591 | static inline __must_check bool try_get_page(struct page *page) |
| 1592 | { |
| 1593 | page = compound_head(page); |
| 1594 | if (WARN_ON_ONCE(page_ref_count(page) <= 0)) |
| 1595 | return false; |
| 1596 | page_ref_inc(page); |
| 1597 | return true; |
| 1598 | } |
| 1599 | |
| 1600 | /** |
| 1601 | * folio_put - Decrement the reference count on a folio. |
| 1602 | * @folio: The folio. |
| 1603 | * |
| 1604 | * If the folio's reference count reaches zero, the memory will be |
| 1605 | * released back to the page allocator and may be used by another |
| 1606 | * allocation immediately. Do not access the memory or the struct folio |
| 1607 | * after calling folio_put() unless you can be sure that it wasn't the |
| 1608 | * last reference. |
| 1609 | * |
| 1610 | * Context: May be called in process or interrupt context, but not in NMI |
| 1611 | * context. May be called while holding a spinlock. |
| 1612 | */ |
| 1613 | static inline void folio_put(struct folio *folio) |
| 1614 | { |
| 1615 | if (folio_put_testzero(folio)) |
| 1616 | __folio_put(folio); |
| 1617 | } |
| 1618 | |
| 1619 | /** |
| 1620 | * folio_put_refs - Reduce the reference count on a folio. |
| 1621 | * @folio: The folio. |
| 1622 | * @refs: The amount to subtract from the folio's reference count. |
| 1623 | * |
| 1624 | * If the folio's reference count reaches zero, the memory will be |
| 1625 | * released back to the page allocator and may be used by another |
| 1626 | * allocation immediately. Do not access the memory or the struct folio |
| 1627 | * after calling folio_put_refs() unless you can be sure that these weren't |
| 1628 | * the last references. |
| 1629 | * |
| 1630 | * Context: May be called in process or interrupt context, but not in NMI |
| 1631 | * context. May be called while holding a spinlock. |
| 1632 | */ |
| 1633 | static inline void folio_put_refs(struct folio *folio, int refs) |
| 1634 | { |
| 1635 | if (folio_ref_sub_and_test(folio, nr: refs)) |
| 1636 | __folio_put(folio); |
| 1637 | } |
| 1638 | |
| 1639 | void folios_put_refs(struct folio_batch *folios, unsigned int *refs); |
| 1640 | |
| 1641 | /* |
| 1642 | * union release_pages_arg - an array of pages or folios |
| 1643 | * |
| 1644 | * release_pages() releases a simple array of multiple pages, and |
| 1645 | * accepts various different forms of said page array: either |
| 1646 | * a regular old boring array of pages, an array of folios, or |
| 1647 | * an array of encoded page pointers. |
| 1648 | * |
| 1649 | * The transparent union syntax for this kind of "any of these |
| 1650 | * argument types" is all kinds of ugly, so look away. |
| 1651 | */ |
| 1652 | typedef union { |
| 1653 | struct page **pages; |
| 1654 | struct folio **folios; |
| 1655 | struct encoded_page **encoded_pages; |
| 1656 | } release_pages_arg __attribute__ ((__transparent_union__)); |
| 1657 | |
| 1658 | void release_pages(release_pages_arg, int nr); |
| 1659 | |
| 1660 | /** |
| 1661 | * folios_put - Decrement the reference count on an array of folios. |
| 1662 | * @folios: The folios. |
| 1663 | * |
| 1664 | * Like folio_put(), but for a batch of folios. This is more efficient |
| 1665 | * than writing the loop yourself as it will optimise the locks which need |
| 1666 | * to be taken if the folios are freed. The folios batch is returned |
| 1667 | * empty and ready to be reused for another batch; there is no need to |
| 1668 | * reinitialise it. |
| 1669 | * |
| 1670 | * Context: May be called in process or interrupt context, but not in NMI |
| 1671 | * context. May be called while holding a spinlock. |
| 1672 | */ |
| 1673 | static inline void folios_put(struct folio_batch *folios) |
| 1674 | { |
| 1675 | folios_put_refs(folios, NULL); |
| 1676 | } |
| 1677 | |
| 1678 | static inline void put_page(struct page *page) |
| 1679 | { |
| 1680 | struct folio *folio = page_folio(page); |
| 1681 | |
| 1682 | if (folio_test_slab(folio) || folio_test_large_kmalloc(folio)) |
| 1683 | return; |
| 1684 | |
| 1685 | folio_put(folio); |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload |
| 1690 | * the page's refcount so that two separate items are tracked: the original page |
| 1691 | * reference count, and also a new count of how many pin_user_pages() calls were |
| 1692 | * made against the page. ("gup-pinned" is another term for the latter). |
| 1693 | * |
| 1694 | * With this scheme, pin_user_pages() becomes special: such pages are marked as |
| 1695 | * distinct from normal pages. As such, the unpin_user_page() call (and its |
| 1696 | * variants) must be used in order to release gup-pinned pages. |
| 1697 | * |
| 1698 | * Choice of value: |
| 1699 | * |
| 1700 | * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference |
| 1701 | * counts with respect to pin_user_pages() and unpin_user_page() becomes |
| 1702 | * simpler, due to the fact that adding an even power of two to the page |
| 1703 | * refcount has the effect of using only the upper N bits, for the code that |
| 1704 | * counts up using the bias value. This means that the lower bits are left for |
| 1705 | * the exclusive use of the original code that increments and decrements by one |
| 1706 | * (or at least, by much smaller values than the bias value). |
| 1707 | * |
| 1708 | * Of course, once the lower bits overflow into the upper bits (and this is |
| 1709 | * OK, because subtraction recovers the original values), then visual inspection |
| 1710 | * no longer suffices to directly view the separate counts. However, for normal |
| 1711 | * applications that don't have huge page reference counts, this won't be an |
| 1712 | * issue. |
| 1713 | * |
| 1714 | * Locking: the lockless algorithm described in folio_try_get_rcu() |
| 1715 | * provides safe operation for get_user_pages(), folio_mkclean() and |
| 1716 | * other calls that race to set up page table entries. |
| 1717 | */ |
| 1718 | #define GUP_PIN_COUNTING_BIAS (1U << 10) |
| 1719 | |
| 1720 | void unpin_user_page(struct page *page); |
| 1721 | void unpin_folio(struct folio *folio); |
| 1722 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
| 1723 | bool make_dirty); |
| 1724 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, |
| 1725 | bool make_dirty); |
| 1726 | void unpin_user_pages(struct page **pages, unsigned long npages); |
| 1727 | void unpin_user_folio(struct folio *folio, unsigned long npages); |
| 1728 | void unpin_folios(struct folio **folios, unsigned long nfolios); |
| 1729 | |
| 1730 | static inline bool is_cow_mapping(vm_flags_t flags) |
| 1731 | { |
| 1732 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
| 1733 | } |
| 1734 | |
| 1735 | #ifndef CONFIG_MMU |
| 1736 | static inline bool is_nommu_shared_mapping(vm_flags_t flags) |
| 1737 | { |
| 1738 | /* |
| 1739 | * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected |
| 1740 | * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of |
| 1741 | * a file mapping. R/O MAP_PRIVATE mappings might still modify |
| 1742 | * underlying memory if ptrace is active, so this is only possible if |
| 1743 | * ptrace does not apply. Note that there is no mprotect() to upgrade |
| 1744 | * write permissions later. |
| 1745 | */ |
| 1746 | return flags & (VM_MAYSHARE | VM_MAYOVERLAY); |
| 1747 | } |
| 1748 | #endif |
| 1749 | |
| 1750 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| 1751 | #define SECTION_IN_PAGE_FLAGS |
| 1752 | #endif |
| 1753 | |
| 1754 | /* |
| 1755 | * The identification function is mainly used by the buddy allocator for |
| 1756 | * determining if two pages could be buddies. We are not really identifying |
| 1757 | * the zone since we could be using the section number id if we do not have |
| 1758 | * node id available in page flags. |
| 1759 | * We only guarantee that it will return the same value for two combinable |
| 1760 | * pages in a zone. |
| 1761 | */ |
| 1762 | static inline int page_zone_id(struct page *page) |
| 1763 | { |
| 1764 | return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK; |
| 1765 | } |
| 1766 | |
| 1767 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
| 1768 | int memdesc_nid(memdesc_flags_t mdf); |
| 1769 | #else |
| 1770 | static inline int memdesc_nid(memdesc_flags_t mdf) |
| 1771 | { |
| 1772 | return (mdf.f >> NODES_PGSHIFT) & NODES_MASK; |
| 1773 | } |
| 1774 | #endif |
| 1775 | |
| 1776 | static inline int page_to_nid(const struct page *page) |
| 1777 | { |
| 1778 | return memdesc_nid(PF_POISONED_CHECK(page)->flags); |
| 1779 | } |
| 1780 | |
| 1781 | static inline int folio_nid(const struct folio *folio) |
| 1782 | { |
| 1783 | return memdesc_nid(mdf: folio->flags); |
| 1784 | } |
| 1785 | |
| 1786 | #ifdef CONFIG_NUMA_BALANCING |
| 1787 | /* page access time bits needs to hold at least 4 seconds */ |
| 1788 | #define PAGE_ACCESS_TIME_MIN_BITS 12 |
| 1789 | #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS |
| 1790 | #define PAGE_ACCESS_TIME_BUCKETS \ |
| 1791 | (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) |
| 1792 | #else |
| 1793 | #define PAGE_ACCESS_TIME_BUCKETS 0 |
| 1794 | #endif |
| 1795 | |
| 1796 | #define PAGE_ACCESS_TIME_MASK \ |
| 1797 | (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) |
| 1798 | |
| 1799 | static inline int cpu_pid_to_cpupid(int cpu, int pid) |
| 1800 | { |
| 1801 | return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); |
| 1802 | } |
| 1803 | |
| 1804 | static inline int cpupid_to_pid(int cpupid) |
| 1805 | { |
| 1806 | return cpupid & LAST__PID_MASK; |
| 1807 | } |
| 1808 | |
| 1809 | static inline int cpupid_to_cpu(int cpupid) |
| 1810 | { |
| 1811 | return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; |
| 1812 | } |
| 1813 | |
| 1814 | static inline int cpupid_to_nid(int cpupid) |
| 1815 | { |
| 1816 | return cpu_to_node(cpu: cpupid_to_cpu(cpupid)); |
| 1817 | } |
| 1818 | |
| 1819 | static inline bool cpupid_pid_unset(int cpupid) |
| 1820 | { |
| 1821 | return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); |
| 1822 | } |
| 1823 | |
| 1824 | static inline bool cpupid_cpu_unset(int cpupid) |
| 1825 | { |
| 1826 | return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); |
| 1827 | } |
| 1828 | |
| 1829 | static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) |
| 1830 | { |
| 1831 | return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); |
| 1832 | } |
| 1833 | |
| 1834 | #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) |
| 1835 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
| 1836 | static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) |
| 1837 | { |
| 1838 | return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); |
| 1839 | } |
| 1840 | |
| 1841 | static inline int folio_last_cpupid(struct folio *folio) |
| 1842 | { |
| 1843 | return folio->_last_cpupid; |
| 1844 | } |
| 1845 | static inline void page_cpupid_reset_last(struct page *page) |
| 1846 | { |
| 1847 | page->_last_cpupid = -1 & LAST_CPUPID_MASK; |
| 1848 | } |
| 1849 | #else |
| 1850 | static inline int folio_last_cpupid(struct folio *folio) |
| 1851 | { |
| 1852 | return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; |
| 1853 | } |
| 1854 | |
| 1855 | int folio_xchg_last_cpupid(struct folio *folio, int cpupid); |
| 1856 | |
| 1857 | static inline void page_cpupid_reset_last(struct page *page) |
| 1858 | { |
| 1859 | page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; |
| 1860 | } |
| 1861 | #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ |
| 1862 | |
| 1863 | static inline int folio_xchg_access_time(struct folio *folio, int time) |
| 1864 | { |
| 1865 | int last_time; |
| 1866 | |
| 1867 | last_time = folio_xchg_last_cpupid(folio, |
| 1868 | time >> PAGE_ACCESS_TIME_BUCKETS); |
| 1869 | return last_time << PAGE_ACCESS_TIME_BUCKETS; |
| 1870 | } |
| 1871 | |
| 1872 | static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) |
| 1873 | { |
| 1874 | unsigned int pid_bit; |
| 1875 | |
| 1876 | pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); |
| 1877 | if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { |
| 1878 | __set_bit(pid_bit, &vma->numab_state->pids_active[1]); |
| 1879 | } |
| 1880 | } |
| 1881 | |
| 1882 | bool folio_use_access_time(struct folio *folio); |
| 1883 | #else /* !CONFIG_NUMA_BALANCING */ |
| 1884 | static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) |
| 1885 | { |
| 1886 | return folio_nid(folio); /* XXX */ |
| 1887 | } |
| 1888 | |
| 1889 | static inline int folio_xchg_access_time(struct folio *folio, int time) |
| 1890 | { |
| 1891 | return 0; |
| 1892 | } |
| 1893 | |
| 1894 | static inline int folio_last_cpupid(struct folio *folio) |
| 1895 | { |
| 1896 | return folio_nid(folio); /* XXX */ |
| 1897 | } |
| 1898 | |
| 1899 | static inline int cpupid_to_nid(int cpupid) |
| 1900 | { |
| 1901 | return -1; |
| 1902 | } |
| 1903 | |
| 1904 | static inline int cpupid_to_pid(int cpupid) |
| 1905 | { |
| 1906 | return -1; |
| 1907 | } |
| 1908 | |
| 1909 | static inline int cpupid_to_cpu(int cpupid) |
| 1910 | { |
| 1911 | return -1; |
| 1912 | } |
| 1913 | |
| 1914 | static inline int cpu_pid_to_cpupid(int nid, int pid) |
| 1915 | { |
| 1916 | return -1; |
| 1917 | } |
| 1918 | |
| 1919 | static inline bool cpupid_pid_unset(int cpupid) |
| 1920 | { |
| 1921 | return true; |
| 1922 | } |
| 1923 | |
| 1924 | static inline void page_cpupid_reset_last(struct page *page) |
| 1925 | { |
| 1926 | } |
| 1927 | |
| 1928 | static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) |
| 1929 | { |
| 1930 | return false; |
| 1931 | } |
| 1932 | |
| 1933 | static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) |
| 1934 | { |
| 1935 | } |
| 1936 | static inline bool folio_use_access_time(struct folio *folio) |
| 1937 | { |
| 1938 | return false; |
| 1939 | } |
| 1940 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1941 | |
| 1942 | #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) |
| 1943 | |
| 1944 | /* |
| 1945 | * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid |
| 1946 | * setting tags for all pages to native kernel tag value 0xff, as the default |
| 1947 | * value 0x00 maps to 0xff. |
| 1948 | */ |
| 1949 | |
| 1950 | static inline u8 page_kasan_tag(const struct page *page) |
| 1951 | { |
| 1952 | u8 tag = KASAN_TAG_KERNEL; |
| 1953 | |
| 1954 | if (kasan_enabled()) { |
| 1955 | tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; |
| 1956 | tag ^= 0xff; |
| 1957 | } |
| 1958 | |
| 1959 | return tag; |
| 1960 | } |
| 1961 | |
| 1962 | static inline void page_kasan_tag_set(struct page *page, u8 tag) |
| 1963 | { |
| 1964 | unsigned long old_flags, flags; |
| 1965 | |
| 1966 | if (!kasan_enabled()) |
| 1967 | return; |
| 1968 | |
| 1969 | tag ^= 0xff; |
| 1970 | old_flags = READ_ONCE(page->flags.f); |
| 1971 | do { |
| 1972 | flags = old_flags; |
| 1973 | flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); |
| 1974 | flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; |
| 1975 | } while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags))); |
| 1976 | } |
| 1977 | |
| 1978 | static inline void page_kasan_tag_reset(struct page *page) |
| 1979 | { |
| 1980 | if (kasan_enabled()) |
| 1981 | page_kasan_tag_set(page, KASAN_TAG_KERNEL); |
| 1982 | } |
| 1983 | |
| 1984 | #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| 1985 | |
| 1986 | static inline u8 page_kasan_tag(const struct page *page) |
| 1987 | { |
| 1988 | return 0xff; |
| 1989 | } |
| 1990 | |
| 1991 | static inline void page_kasan_tag_set(struct page *page, u8 tag) { } |
| 1992 | static inline void page_kasan_tag_reset(struct page *page) { } |
| 1993 | |
| 1994 | #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| 1995 | |
| 1996 | static inline struct zone *page_zone(const struct page *page) |
| 1997 | { |
| 1998 | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; |
| 1999 | } |
| 2000 | |
| 2001 | static inline pg_data_t *page_pgdat(const struct page *page) |
| 2002 | { |
| 2003 | return NODE_DATA(page_to_nid(page)); |
| 2004 | } |
| 2005 | |
| 2006 | static inline pg_data_t *folio_pgdat(const struct folio *folio) |
| 2007 | { |
| 2008 | return NODE_DATA(folio_nid(folio)); |
| 2009 | } |
| 2010 | |
| 2011 | static inline struct zone *folio_zone(const struct folio *folio) |
| 2012 | { |
| 2013 | return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)]; |
| 2014 | } |
| 2015 | |
| 2016 | #ifdef SECTION_IN_PAGE_FLAGS |
| 2017 | static inline void set_page_section(struct page *page, unsigned long section) |
| 2018 | { |
| 2019 | page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
| 2020 | page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
| 2021 | } |
| 2022 | |
| 2023 | static inline unsigned long memdesc_section(memdesc_flags_t mdf) |
| 2024 | { |
| 2025 | return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
| 2026 | } |
| 2027 | #else /* !SECTION_IN_PAGE_FLAGS */ |
| 2028 | static inline unsigned long memdesc_section(memdesc_flags_t mdf) |
| 2029 | { |
| 2030 | return 0; |
| 2031 | } |
| 2032 | #endif /* SECTION_IN_PAGE_FLAGS */ |
| 2033 | |
| 2034 | /** |
| 2035 | * folio_pfn - Return the Page Frame Number of a folio. |
| 2036 | * @folio: The folio. |
| 2037 | * |
| 2038 | * A folio may contain multiple pages. The pages have consecutive |
| 2039 | * Page Frame Numbers. |
| 2040 | * |
| 2041 | * Return: The Page Frame Number of the first page in the folio. |
| 2042 | */ |
| 2043 | static inline unsigned long folio_pfn(const struct folio *folio) |
| 2044 | { |
| 2045 | return page_to_pfn(&folio->page); |
| 2046 | } |
| 2047 | |
| 2048 | static inline struct folio *pfn_folio(unsigned long pfn) |
| 2049 | { |
| 2050 | return page_folio(pfn_to_page(pfn)); |
| 2051 | } |
| 2052 | |
| 2053 | #ifdef CONFIG_MMU |
| 2054 | static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot) |
| 2055 | { |
| 2056 | return pfn_pte(page_to_pfn(page), pgprot); |
| 2057 | } |
| 2058 | |
| 2059 | /** |
| 2060 | * folio_mk_pte - Create a PTE for this folio |
| 2061 | * @folio: The folio to create a PTE for |
| 2062 | * @pgprot: The page protection bits to use |
| 2063 | * |
| 2064 | * Create a page table entry for the first page of this folio. |
| 2065 | * This is suitable for passing to set_ptes(). |
| 2066 | * |
| 2067 | * Return: A page table entry suitable for mapping this folio. |
| 2068 | */ |
| 2069 | static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot) |
| 2070 | { |
| 2071 | return pfn_pte(page_nr: folio_pfn(folio), pgprot); |
| 2072 | } |
| 2073 | |
| 2074 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 2075 | /** |
| 2076 | * folio_mk_pmd - Create a PMD for this folio |
| 2077 | * @folio: The folio to create a PMD for |
| 2078 | * @pgprot: The page protection bits to use |
| 2079 | * |
| 2080 | * Create a page table entry for the first page of this folio. |
| 2081 | * This is suitable for passing to set_pmd_at(). |
| 2082 | * |
| 2083 | * Return: A page table entry suitable for mapping this folio. |
| 2084 | */ |
| 2085 | static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot) |
| 2086 | { |
| 2087 | return pmd_mkhuge(pmd: pfn_pmd(page_nr: folio_pfn(folio), pgprot)); |
| 2088 | } |
| 2089 | |
| 2090 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD |
| 2091 | /** |
| 2092 | * folio_mk_pud - Create a PUD for this folio |
| 2093 | * @folio: The folio to create a PUD for |
| 2094 | * @pgprot: The page protection bits to use |
| 2095 | * |
| 2096 | * Create a page table entry for the first page of this folio. |
| 2097 | * This is suitable for passing to set_pud_at(). |
| 2098 | * |
| 2099 | * Return: A page table entry suitable for mapping this folio. |
| 2100 | */ |
| 2101 | static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot) |
| 2102 | { |
| 2103 | return pud_mkhuge(pud: pfn_pud(page_nr: folio_pfn(folio), pgprot)); |
| 2104 | } |
| 2105 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ |
| 2106 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| 2107 | #endif /* CONFIG_MMU */ |
| 2108 | |
| 2109 | static inline bool folio_has_pincount(const struct folio *folio) |
| 2110 | { |
| 2111 | if (IS_ENABLED(CONFIG_64BIT)) |
| 2112 | return folio_test_large(folio); |
| 2113 | return folio_order(folio) > 1; |
| 2114 | } |
| 2115 | |
| 2116 | /** |
| 2117 | * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. |
| 2118 | * @folio: The folio. |
| 2119 | * |
| 2120 | * This function checks if a folio has been pinned via a call to |
| 2121 | * a function in the pin_user_pages() family. |
| 2122 | * |
| 2123 | * For small folios, the return value is partially fuzzy: false is not fuzzy, |
| 2124 | * because it means "definitely not pinned for DMA", but true means "probably |
| 2125 | * pinned for DMA, but possibly a false positive due to having at least |
| 2126 | * GUP_PIN_COUNTING_BIAS worth of normal folio references". |
| 2127 | * |
| 2128 | * False positives are OK, because: a) it's unlikely for a folio to |
| 2129 | * get that many refcounts, and b) all the callers of this routine are |
| 2130 | * expected to be able to deal gracefully with a false positive. |
| 2131 | * |
| 2132 | * For most large folios, the result will be exactly correct. That's because |
| 2133 | * we have more tracking data available: the _pincount field is used |
| 2134 | * instead of the GUP_PIN_COUNTING_BIAS scheme. |
| 2135 | * |
| 2136 | * For more information, please see Documentation/core-api/pin_user_pages.rst. |
| 2137 | * |
| 2138 | * Return: True, if it is likely that the folio has been "dma-pinned". |
| 2139 | * False, if the folio is definitely not dma-pinned. |
| 2140 | */ |
| 2141 | static inline bool folio_maybe_dma_pinned(struct folio *folio) |
| 2142 | { |
| 2143 | if (folio_has_pincount(folio)) |
| 2144 | return atomic_read(v: &folio->_pincount) > 0; |
| 2145 | |
| 2146 | /* |
| 2147 | * folio_ref_count() is signed. If that refcount overflows, then |
| 2148 | * folio_ref_count() returns a negative value, and callers will avoid |
| 2149 | * further incrementing the refcount. |
| 2150 | * |
| 2151 | * Here, for that overflow case, use the sign bit to count a little |
| 2152 | * bit higher via unsigned math, and thus still get an accurate result. |
| 2153 | */ |
| 2154 | return ((unsigned int)folio_ref_count(folio)) >= |
| 2155 | GUP_PIN_COUNTING_BIAS; |
| 2156 | } |
| 2157 | |
| 2158 | /* |
| 2159 | * This should most likely only be called during fork() to see whether we |
| 2160 | * should break the cow immediately for an anon page on the src mm. |
| 2161 | * |
| 2162 | * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. |
| 2163 | */ |
| 2164 | static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, |
| 2165 | struct folio *folio) |
| 2166 | { |
| 2167 | VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); |
| 2168 | |
| 2169 | if (!mm_flags_test(MMF_HAS_PINNED, mm: vma->vm_mm)) |
| 2170 | return false; |
| 2171 | |
| 2172 | return folio_maybe_dma_pinned(folio); |
| 2173 | } |
| 2174 | |
| 2175 | /** |
| 2176 | * is_zero_page - Query if a page is a zero page |
| 2177 | * @page: The page to query |
| 2178 | * |
| 2179 | * This returns true if @page is one of the permanent zero pages. |
| 2180 | */ |
| 2181 | static inline bool is_zero_page(const struct page *page) |
| 2182 | { |
| 2183 | return is_zero_pfn(page_to_pfn(page)); |
| 2184 | } |
| 2185 | |
| 2186 | /** |
| 2187 | * is_zero_folio - Query if a folio is a zero page |
| 2188 | * @folio: The folio to query |
| 2189 | * |
| 2190 | * This returns true if @folio is one of the permanent zero pages. |
| 2191 | */ |
| 2192 | static inline bool is_zero_folio(const struct folio *folio) |
| 2193 | { |
| 2194 | return is_zero_page(page: &folio->page); |
| 2195 | } |
| 2196 | |
| 2197 | /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ |
| 2198 | #ifdef CONFIG_MIGRATION |
| 2199 | static inline bool folio_is_longterm_pinnable(struct folio *folio) |
| 2200 | { |
| 2201 | #ifdef CONFIG_CMA |
| 2202 | int mt = folio_migratetype(folio); |
| 2203 | |
| 2204 | if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) |
| 2205 | return false; |
| 2206 | #endif |
| 2207 | /* The zero page can be "pinned" but gets special handling. */ |
| 2208 | if (is_zero_folio(folio)) |
| 2209 | return true; |
| 2210 | |
| 2211 | /* Coherent device memory must always allow eviction. */ |
| 2212 | if (folio_is_device_coherent(folio)) |
| 2213 | return false; |
| 2214 | |
| 2215 | /* |
| 2216 | * Filesystems can only tolerate transient delays to truncate and |
| 2217 | * hole-punch operations |
| 2218 | */ |
| 2219 | if (folio_is_fsdax(folio)) |
| 2220 | return false; |
| 2221 | |
| 2222 | /* Otherwise, non-movable zone folios can be pinned. */ |
| 2223 | return !folio_is_zone_movable(folio); |
| 2224 | |
| 2225 | } |
| 2226 | #else |
| 2227 | static inline bool folio_is_longterm_pinnable(struct folio *folio) |
| 2228 | { |
| 2229 | return true; |
| 2230 | } |
| 2231 | #endif |
| 2232 | |
| 2233 | static inline void set_page_zone(struct page *page, enum zone_type zone) |
| 2234 | { |
| 2235 | page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT); |
| 2236 | page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
| 2237 | } |
| 2238 | |
| 2239 | static inline void set_page_node(struct page *page, unsigned long node) |
| 2240 | { |
| 2241 | page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT); |
| 2242 | page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT; |
| 2243 | } |
| 2244 | |
| 2245 | static inline void set_page_links(struct page *page, enum zone_type zone, |
| 2246 | unsigned long node, unsigned long pfn) |
| 2247 | { |
| 2248 | set_page_zone(page, zone); |
| 2249 | set_page_node(page, node); |
| 2250 | #ifdef SECTION_IN_PAGE_FLAGS |
| 2251 | set_page_section(page, pfn_to_section_nr(pfn)); |
| 2252 | #endif |
| 2253 | } |
| 2254 | |
| 2255 | /** |
| 2256 | * folio_nr_pages - The number of pages in the folio. |
| 2257 | * @folio: The folio. |
| 2258 | * |
| 2259 | * Return: A positive power of two. |
| 2260 | */ |
| 2261 | static inline unsigned long folio_nr_pages(const struct folio *folio) |
| 2262 | { |
| 2263 | if (!folio_test_large(folio)) |
| 2264 | return 1; |
| 2265 | return folio_large_nr_pages(folio); |
| 2266 | } |
| 2267 | |
| 2268 | #if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS) |
| 2269 | /* |
| 2270 | * We don't expect any folios that exceed buddy sizes (and consequently |
| 2271 | * memory sections). |
| 2272 | */ |
| 2273 | #define MAX_FOLIO_ORDER MAX_PAGE_ORDER |
| 2274 | #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| 2275 | /* |
| 2276 | * Only pages within a single memory section are guaranteed to be |
| 2277 | * contiguous. By limiting folios to a single memory section, all folio |
| 2278 | * pages are guaranteed to be contiguous. |
| 2279 | */ |
| 2280 | #define MAX_FOLIO_ORDER PFN_SECTION_SHIFT |
| 2281 | #elif defined(CONFIG_HUGETLB_PAGE) |
| 2282 | /* |
| 2283 | * There is no real limit on the folio size. We limit them to the maximum we |
| 2284 | * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect |
| 2285 | * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit. |
| 2286 | */ |
| 2287 | #define MAX_FOLIO_ORDER get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G) |
| 2288 | #else |
| 2289 | /* |
| 2290 | * Without hugetlb, gigantic folios that are bigger than a single PUD are |
| 2291 | * currently impossible. |
| 2292 | */ |
| 2293 | #define MAX_FOLIO_ORDER PUD_ORDER |
| 2294 | #endif |
| 2295 | |
| 2296 | #define MAX_FOLIO_NR_PAGES (1UL << MAX_FOLIO_ORDER) |
| 2297 | |
| 2298 | /* |
| 2299 | * compound_nr() returns the number of pages in this potentially compound |
| 2300 | * page. compound_nr() can be called on a tail page, and is defined to |
| 2301 | * return 1 in that case. |
| 2302 | */ |
| 2303 | static inline unsigned long compound_nr(const struct page *page) |
| 2304 | { |
| 2305 | const struct folio *folio = (struct folio *)page; |
| 2306 | |
| 2307 | if (!test_bit(PG_head, &folio->flags.f)) |
| 2308 | return 1; |
| 2309 | return folio_large_nr_pages(folio); |
| 2310 | } |
| 2311 | |
| 2312 | /** |
| 2313 | * folio_next - Move to the next physical folio. |
| 2314 | * @folio: The folio we're currently operating on. |
| 2315 | * |
| 2316 | * If you have physically contiguous memory which may span more than |
| 2317 | * one folio (eg a &struct bio_vec), use this function to move from one |
| 2318 | * folio to the next. Do not use it if the memory is only virtually |
| 2319 | * contiguous as the folios are almost certainly not adjacent to each |
| 2320 | * other. This is the folio equivalent to writing ``page++``. |
| 2321 | * |
| 2322 | * Context: We assume that the folios are refcounted and/or locked at a |
| 2323 | * higher level and do not adjust the reference counts. |
| 2324 | * Return: The next struct folio. |
| 2325 | */ |
| 2326 | static inline struct folio *folio_next(struct folio *folio) |
| 2327 | { |
| 2328 | return (struct folio *)folio_page(folio, folio_nr_pages(folio)); |
| 2329 | } |
| 2330 | |
| 2331 | /** |
| 2332 | * folio_shift - The size of the memory described by this folio. |
| 2333 | * @folio: The folio. |
| 2334 | * |
| 2335 | * A folio represents a number of bytes which is a power-of-two in size. |
| 2336 | * This function tells you which power-of-two the folio is. See also |
| 2337 | * folio_size() and folio_order(). |
| 2338 | * |
| 2339 | * Context: The caller should have a reference on the folio to prevent |
| 2340 | * it from being split. It is not necessary for the folio to be locked. |
| 2341 | * Return: The base-2 logarithm of the size of this folio. |
| 2342 | */ |
| 2343 | static inline unsigned int folio_shift(const struct folio *folio) |
| 2344 | { |
| 2345 | return PAGE_SHIFT + folio_order(folio); |
| 2346 | } |
| 2347 | |
| 2348 | /** |
| 2349 | * folio_size - The number of bytes in a folio. |
| 2350 | * @folio: The folio. |
| 2351 | * |
| 2352 | * Context: The caller should have a reference on the folio to prevent |
| 2353 | * it from being split. It is not necessary for the folio to be locked. |
| 2354 | * Return: The number of bytes in this folio. |
| 2355 | */ |
| 2356 | static inline size_t folio_size(const struct folio *folio) |
| 2357 | { |
| 2358 | return PAGE_SIZE << folio_order(folio); |
| 2359 | } |
| 2360 | |
| 2361 | /** |
| 2362 | * folio_maybe_mapped_shared - Whether the folio is mapped into the page |
| 2363 | * tables of more than one MM |
| 2364 | * @folio: The folio. |
| 2365 | * |
| 2366 | * This function checks if the folio maybe currently mapped into more than one |
| 2367 | * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single |
| 2368 | * MM ("mapped exclusively"). |
| 2369 | * |
| 2370 | * For KSM folios, this function also returns "mapped shared" when a folio is |
| 2371 | * mapped multiple times into the same MM, because the individual page mappings |
| 2372 | * are independent. |
| 2373 | * |
| 2374 | * For small anonymous folios and anonymous hugetlb folios, the return |
| 2375 | * value will be exactly correct: non-KSM folios can only be mapped at most once |
| 2376 | * into an MM, and they cannot be partially mapped. KSM folios are |
| 2377 | * considered shared even if mapped multiple times into the same MM. |
| 2378 | * |
| 2379 | * For other folios, the result can be fuzzy: |
| 2380 | * #. For partially-mappable large folios (THP), the return value can wrongly |
| 2381 | * indicate "mapped shared" (false positive) if a folio was mapped by |
| 2382 | * more than two MMs at one point in time. |
| 2383 | * #. For pagecache folios (including hugetlb), the return value can wrongly |
| 2384 | * indicate "mapped shared" (false positive) when two VMAs in the same MM |
| 2385 | * cover the same file range. |
| 2386 | * |
| 2387 | * Further, this function only considers current page table mappings that |
| 2388 | * are tracked using the folio mapcount(s). |
| 2389 | * |
| 2390 | * This function does not consider: |
| 2391 | * #. If the folio might get mapped in the (near) future (e.g., swapcache, |
| 2392 | * pagecache, temporary unmapping for migration). |
| 2393 | * #. If the folio is mapped differently (VM_PFNMAP). |
| 2394 | * #. If hugetlb page table sharing applies. Callers might want to check |
| 2395 | * hugetlb_pmd_shared(). |
| 2396 | * |
| 2397 | * Return: Whether the folio is estimated to be mapped into more than one MM. |
| 2398 | */ |
| 2399 | static inline bool folio_maybe_mapped_shared(struct folio *folio) |
| 2400 | { |
| 2401 | int mapcount = folio_mapcount(folio); |
| 2402 | |
| 2403 | /* Only partially-mappable folios require more care. */ |
| 2404 | if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) |
| 2405 | return mapcount > 1; |
| 2406 | |
| 2407 | /* |
| 2408 | * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... |
| 2409 | * simply assume "mapped shared", nobody should really care |
| 2410 | * about this for arbitrary kernel allocations. |
| 2411 | */ |
| 2412 | if (!IS_ENABLED(CONFIG_MM_ID)) |
| 2413 | return true; |
| 2414 | |
| 2415 | /* |
| 2416 | * A single mapping implies "mapped exclusively", even if the |
| 2417 | * folio flag says something different: it's easier to handle this |
| 2418 | * case here instead of on the RMAP hot path. |
| 2419 | */ |
| 2420 | if (mapcount <= 1) |
| 2421 | return false; |
| 2422 | return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); |
| 2423 | } |
| 2424 | |
| 2425 | /** |
| 2426 | * folio_expected_ref_count - calculate the expected folio refcount |
| 2427 | * @folio: the folio |
| 2428 | * |
| 2429 | * Calculate the expected folio refcount, taking references from the pagecache, |
| 2430 | * swapcache, PG_private and page table mappings into account. Useful in |
| 2431 | * combination with folio_ref_count() to detect unexpected references (e.g., |
| 2432 | * GUP or other temporary references). |
| 2433 | * |
| 2434 | * Does currently not consider references from the LRU cache. If the folio |
| 2435 | * was isolated from the LRU (which is the case during migration or split), |
| 2436 | * the LRU cache does not apply. |
| 2437 | * |
| 2438 | * Calling this function on an unmapped folio -- !folio_mapped() -- that is |
| 2439 | * locked will return a stable result. |
| 2440 | * |
| 2441 | * Calling this function on a mapped folio will not result in a stable result, |
| 2442 | * because nothing stops additional page table mappings from coming (e.g., |
| 2443 | * fork()) or going (e.g., munmap()). |
| 2444 | * |
| 2445 | * Calling this function without the folio lock will also not result in a |
| 2446 | * stable result: for example, the folio might get dropped from the swapcache |
| 2447 | * concurrently. |
| 2448 | * |
| 2449 | * However, even when called without the folio lock or on a mapped folio, |
| 2450 | * this function can be used to detect unexpected references early (for example, |
| 2451 | * if it makes sense to even lock the folio and unmap it). |
| 2452 | * |
| 2453 | * The caller must add any reference (e.g., from folio_try_get()) it might be |
| 2454 | * holding itself to the result. |
| 2455 | * |
| 2456 | * Returns the expected folio refcount. |
| 2457 | */ |
| 2458 | static inline int folio_expected_ref_count(const struct folio *folio) |
| 2459 | { |
| 2460 | const int order = folio_order(folio); |
| 2461 | int ref_count = 0; |
| 2462 | |
| 2463 | if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio))) |
| 2464 | return 0; |
| 2465 | |
| 2466 | /* One reference per page from the swapcache. */ |
| 2467 | ref_count += folio_test_swapcache(folio) << order; |
| 2468 | |
| 2469 | if (!folio_test_anon(folio)) { |
| 2470 | /* One reference per page from the pagecache. */ |
| 2471 | ref_count += !!folio->mapping << order; |
| 2472 | /* One reference from PG_private. */ |
| 2473 | ref_count += folio_test_private(folio); |
| 2474 | } |
| 2475 | |
| 2476 | /* One reference per page table mapping. */ |
| 2477 | return ref_count + folio_mapcount(folio); |
| 2478 | } |
| 2479 | |
| 2480 | #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE |
| 2481 | static inline int arch_make_folio_accessible(struct folio *folio) |
| 2482 | { |
| 2483 | return 0; |
| 2484 | } |
| 2485 | #endif |
| 2486 | |
| 2487 | /* |
| 2488 | * Some inline functions in vmstat.h depend on page_zone() |
| 2489 | */ |
| 2490 | #include <linux/vmstat.h> |
| 2491 | |
| 2492 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
| 2493 | #define HASHED_PAGE_VIRTUAL |
| 2494 | #endif |
| 2495 | |
| 2496 | #if defined(WANT_PAGE_VIRTUAL) |
| 2497 | static inline void *page_address(const struct page *page) |
| 2498 | { |
| 2499 | return page->virtual; |
| 2500 | } |
| 2501 | static inline void set_page_address(struct page *page, void *address) |
| 2502 | { |
| 2503 | page->virtual = address; |
| 2504 | } |
| 2505 | #define page_address_init() do { } while(0) |
| 2506 | #endif |
| 2507 | |
| 2508 | #if defined(HASHED_PAGE_VIRTUAL) |
| 2509 | void *page_address(const struct page *page); |
| 2510 | void set_page_address(struct page *page, void *virtual); |
| 2511 | void page_address_init(void); |
| 2512 | #endif |
| 2513 | |
| 2514 | static __always_inline void *lowmem_page_address(const struct page *page) |
| 2515 | { |
| 2516 | return page_to_virt(page); |
| 2517 | } |
| 2518 | |
| 2519 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
| 2520 | #define page_address(page) lowmem_page_address(page) |
| 2521 | #define set_page_address(page, address) do { } while(0) |
| 2522 | #define page_address_init() do { } while(0) |
| 2523 | #endif |
| 2524 | |
| 2525 | static inline void *folio_address(const struct folio *folio) |
| 2526 | { |
| 2527 | return page_address(&folio->page); |
| 2528 | } |
| 2529 | |
| 2530 | /* |
| 2531 | * Return true only if the page has been allocated with |
| 2532 | * ALLOC_NO_WATERMARKS and the low watermark was not |
| 2533 | * met implying that the system is under some pressure. |
| 2534 | */ |
| 2535 | static inline bool page_is_pfmemalloc(const struct page *page) |
| 2536 | { |
| 2537 | /* |
| 2538 | * lru.next has bit 1 set if the page is allocated from the |
| 2539 | * pfmemalloc reserves. Callers may simply overwrite it if |
| 2540 | * they do not need to preserve that information. |
| 2541 | */ |
| 2542 | return (uintptr_t)page->lru.next & BIT(1); |
| 2543 | } |
| 2544 | |
| 2545 | /* |
| 2546 | * Return true only if the folio has been allocated with |
| 2547 | * ALLOC_NO_WATERMARKS and the low watermark was not |
| 2548 | * met implying that the system is under some pressure. |
| 2549 | */ |
| 2550 | static inline bool folio_is_pfmemalloc(const struct folio *folio) |
| 2551 | { |
| 2552 | /* |
| 2553 | * lru.next has bit 1 set if the page is allocated from the |
| 2554 | * pfmemalloc reserves. Callers may simply overwrite it if |
| 2555 | * they do not need to preserve that information. |
| 2556 | */ |
| 2557 | return (uintptr_t)folio->lru.next & BIT(1); |
| 2558 | } |
| 2559 | |
| 2560 | /* |
| 2561 | * Only to be called by the page allocator on a freshly allocated |
| 2562 | * page. |
| 2563 | */ |
| 2564 | static inline void set_page_pfmemalloc(struct page *page) |
| 2565 | { |
| 2566 | page->lru.next = (void *)BIT(1); |
| 2567 | } |
| 2568 | |
| 2569 | static inline void clear_page_pfmemalloc(struct page *page) |
| 2570 | { |
| 2571 | page->lru.next = NULL; |
| 2572 | } |
| 2573 | |
| 2574 | /* |
| 2575 | * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. |
| 2576 | */ |
| 2577 | extern void pagefault_out_of_memory(void); |
| 2578 | |
| 2579 | #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
| 2580 | #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) |
| 2581 | |
| 2582 | /* |
| 2583 | * Parameter block passed down to zap_pte_range in exceptional cases. |
| 2584 | */ |
| 2585 | struct zap_details { |
| 2586 | struct folio *single_folio; /* Locked folio to be unmapped */ |
| 2587 | bool even_cows; /* Zap COWed private pages too? */ |
| 2588 | bool reclaim_pt; /* Need reclaim page tables? */ |
| 2589 | zap_flags_t zap_flags; /* Extra flags for zapping */ |
| 2590 | }; |
| 2591 | |
| 2592 | /* |
| 2593 | * Whether to drop the pte markers, for example, the uffd-wp information for |
| 2594 | * file-backed memory. This should only be specified when we will completely |
| 2595 | * drop the page in the mm, either by truncation or unmapping of the vma. By |
| 2596 | * default, the flag is not set. |
| 2597 | */ |
| 2598 | #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) |
| 2599 | /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ |
| 2600 | #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) |
| 2601 | |
| 2602 | #ifdef CONFIG_MMU |
| 2603 | extern bool can_do_mlock(void); |
| 2604 | #else |
| 2605 | static inline bool can_do_mlock(void) { return false; } |
| 2606 | #endif |
| 2607 | extern int user_shm_lock(size_t, struct ucounts *); |
| 2608 | extern void user_shm_unlock(size_t, struct ucounts *); |
| 2609 | |
| 2610 | struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, |
| 2611 | pte_t pte); |
| 2612 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
| 2613 | pte_t pte); |
| 2614 | struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, |
| 2615 | unsigned long addr, pmd_t pmd); |
| 2616 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 2617 | pmd_t pmd); |
| 2618 | struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr, |
| 2619 | pud_t pud); |
| 2620 | |
| 2621 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
| 2622 | unsigned long size); |
| 2623 | void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
| 2624 | unsigned long size, struct zap_details *details); |
| 2625 | static inline void zap_vma_pages(struct vm_area_struct *vma) |
| 2626 | { |
| 2627 | zap_page_range_single(vma, address: vma->vm_start, |
| 2628 | size: vma->vm_end - vma->vm_start, NULL); |
| 2629 | } |
| 2630 | void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, |
| 2631 | struct vm_area_struct *start_vma, unsigned long start, |
| 2632 | unsigned long end, unsigned long tree_end); |
| 2633 | |
| 2634 | struct mmu_notifier_range; |
| 2635 | |
| 2636 | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, |
| 2637 | unsigned long end, unsigned long floor, unsigned long ceiling); |
| 2638 | int |
| 2639 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); |
| 2640 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
| 2641 | void *buf, int len, int write); |
| 2642 | |
| 2643 | struct follow_pfnmap_args { |
| 2644 | /** |
| 2645 | * Inputs: |
| 2646 | * @vma: Pointer to @vm_area_struct struct |
| 2647 | * @address: the virtual address to walk |
| 2648 | */ |
| 2649 | struct vm_area_struct *vma; |
| 2650 | unsigned long address; |
| 2651 | /** |
| 2652 | * Internals: |
| 2653 | * |
| 2654 | * The caller shouldn't touch any of these. |
| 2655 | */ |
| 2656 | spinlock_t *lock; |
| 2657 | pte_t *ptep; |
| 2658 | /** |
| 2659 | * Outputs: |
| 2660 | * |
| 2661 | * @pfn: the PFN of the address |
| 2662 | * @addr_mask: address mask covering pfn |
| 2663 | * @pgprot: the pgprot_t of the mapping |
| 2664 | * @writable: whether the mapping is writable |
| 2665 | * @special: whether the mapping is a special mapping (real PFN maps) |
| 2666 | */ |
| 2667 | unsigned long pfn; |
| 2668 | unsigned long addr_mask; |
| 2669 | pgprot_t pgprot; |
| 2670 | bool writable; |
| 2671 | bool special; |
| 2672 | }; |
| 2673 | int follow_pfnmap_start(struct follow_pfnmap_args *args); |
| 2674 | void follow_pfnmap_end(struct follow_pfnmap_args *args); |
| 2675 | |
| 2676 | extern void truncate_pagecache(struct inode *inode, loff_t new); |
| 2677 | extern void truncate_setsize(struct inode *inode, loff_t newsize); |
| 2678 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); |
| 2679 | void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); |
| 2680 | int generic_error_remove_folio(struct address_space *mapping, |
| 2681 | struct folio *folio); |
| 2682 | |
| 2683 | struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, |
| 2684 | unsigned long address, struct pt_regs *regs); |
| 2685 | |
| 2686 | #ifdef CONFIG_MMU |
| 2687 | extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
| 2688 | unsigned long address, unsigned int flags, |
| 2689 | struct pt_regs *regs); |
| 2690 | extern int fixup_user_fault(struct mm_struct *mm, |
| 2691 | unsigned long address, unsigned int fault_flags, |
| 2692 | bool *unlocked); |
| 2693 | void unmap_mapping_pages(struct address_space *mapping, |
| 2694 | pgoff_t start, pgoff_t nr, bool even_cows); |
| 2695 | void unmap_mapping_range(struct address_space *mapping, |
| 2696 | loff_t const holebegin, loff_t const holelen, int even_cows); |
| 2697 | #else |
| 2698 | static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
| 2699 | unsigned long address, unsigned int flags, |
| 2700 | struct pt_regs *regs) |
| 2701 | { |
| 2702 | /* should never happen if there's no MMU */ |
| 2703 | BUG(); |
| 2704 | return VM_FAULT_SIGBUS; |
| 2705 | } |
| 2706 | static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, |
| 2707 | unsigned int fault_flags, bool *unlocked) |
| 2708 | { |
| 2709 | /* should never happen if there's no MMU */ |
| 2710 | BUG(); |
| 2711 | return -EFAULT; |
| 2712 | } |
| 2713 | static inline void unmap_mapping_pages(struct address_space *mapping, |
| 2714 | pgoff_t start, pgoff_t nr, bool even_cows) { } |
| 2715 | static inline void unmap_mapping_range(struct address_space *mapping, |
| 2716 | loff_t const holebegin, loff_t const holelen, int even_cows) { } |
| 2717 | #endif |
| 2718 | |
| 2719 | static inline void unmap_shared_mapping_range(struct address_space *mapping, |
| 2720 | loff_t const holebegin, loff_t const holelen) |
| 2721 | { |
| 2722 | unmap_mapping_range(mapping, holebegin, holelen, even_cows: 0); |
| 2723 | } |
| 2724 | |
| 2725 | static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, |
| 2726 | unsigned long addr); |
| 2727 | |
| 2728 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, |
| 2729 | void *buf, int len, unsigned int gup_flags); |
| 2730 | extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
| 2731 | void *buf, int len, unsigned int gup_flags); |
| 2732 | |
| 2733 | #ifdef CONFIG_BPF_SYSCALL |
| 2734 | extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, |
| 2735 | void *buf, int len, unsigned int gup_flags); |
| 2736 | #endif |
| 2737 | |
| 2738 | long get_user_pages_remote(struct mm_struct *mm, |
| 2739 | unsigned long start, unsigned long nr_pages, |
| 2740 | unsigned int gup_flags, struct page **pages, |
| 2741 | int *locked); |
| 2742 | long pin_user_pages_remote(struct mm_struct *mm, |
| 2743 | unsigned long start, unsigned long nr_pages, |
| 2744 | unsigned int gup_flags, struct page **pages, |
| 2745 | int *locked); |
| 2746 | |
| 2747 | /* |
| 2748 | * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. |
| 2749 | */ |
| 2750 | static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, |
| 2751 | unsigned long addr, |
| 2752 | int gup_flags, |
| 2753 | struct vm_area_struct **vmap) |
| 2754 | { |
| 2755 | struct page *page; |
| 2756 | struct vm_area_struct *vma; |
| 2757 | int got; |
| 2758 | |
| 2759 | if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) |
| 2760 | return ERR_PTR(error: -EINVAL); |
| 2761 | |
| 2762 | got = get_user_pages_remote(mm, start: addr, nr_pages: 1, gup_flags, pages: &page, NULL); |
| 2763 | |
| 2764 | if (got < 0) |
| 2765 | return ERR_PTR(error: got); |
| 2766 | |
| 2767 | vma = vma_lookup(mm, addr); |
| 2768 | if (WARN_ON_ONCE(!vma)) { |
| 2769 | put_page(page); |
| 2770 | return ERR_PTR(error: -EINVAL); |
| 2771 | } |
| 2772 | |
| 2773 | *vmap = vma; |
| 2774 | return page; |
| 2775 | } |
| 2776 | |
| 2777 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
| 2778 | unsigned int gup_flags, struct page **pages); |
| 2779 | long pin_user_pages(unsigned long start, unsigned long nr_pages, |
| 2780 | unsigned int gup_flags, struct page **pages); |
| 2781 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| 2782 | struct page **pages, unsigned int gup_flags); |
| 2783 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| 2784 | struct page **pages, unsigned int gup_flags); |
| 2785 | long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, |
| 2786 | struct folio **folios, unsigned int max_folios, |
| 2787 | pgoff_t *offset); |
| 2788 | int folio_add_pins(struct folio *folio, unsigned int pins); |
| 2789 | |
| 2790 | int get_user_pages_fast(unsigned long start, int nr_pages, |
| 2791 | unsigned int gup_flags, struct page **pages); |
| 2792 | int pin_user_pages_fast(unsigned long start, int nr_pages, |
| 2793 | unsigned int gup_flags, struct page **pages); |
| 2794 | void folio_add_pin(struct folio *folio); |
| 2795 | |
| 2796 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); |
| 2797 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, |
| 2798 | const struct task_struct *task, bool bypass_rlim); |
| 2799 | |
| 2800 | struct kvec; |
| 2801 | struct page *get_dump_page(unsigned long addr, int *locked); |
| 2802 | |
| 2803 | bool folio_mark_dirty(struct folio *folio); |
| 2804 | bool folio_mark_dirty_lock(struct folio *folio); |
| 2805 | bool set_page_dirty(struct page *page); |
| 2806 | int set_page_dirty_lock(struct page *page); |
| 2807 | |
| 2808 | int get_cmdline(struct task_struct *task, char *buffer, int buflen); |
| 2809 | |
| 2810 | /* |
| 2811 | * Flags used by change_protection(). For now we make it a bitmap so |
| 2812 | * that we can pass in multiple flags just like parameters. However |
| 2813 | * for now all the callers are only use one of the flags at the same |
| 2814 | * time. |
| 2815 | */ |
| 2816 | /* |
| 2817 | * Whether we should manually check if we can map individual PTEs writable, |
| 2818 | * because something (e.g., COW, uffd-wp) blocks that from happening for all |
| 2819 | * PTEs automatically in a writable mapping. |
| 2820 | */ |
| 2821 | #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) |
| 2822 | /* Whether this protection change is for NUMA hints */ |
| 2823 | #define MM_CP_PROT_NUMA (1UL << 1) |
| 2824 | /* Whether this change is for write protecting */ |
| 2825 | #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ |
| 2826 | #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ |
| 2827 | #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ |
| 2828 | MM_CP_UFFD_WP_RESOLVE) |
| 2829 | |
| 2830 | bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, |
| 2831 | pte_t pte); |
| 2832 | extern long change_protection(struct mmu_gather *tlb, |
| 2833 | struct vm_area_struct *vma, unsigned long start, |
| 2834 | unsigned long end, unsigned long cp_flags); |
| 2835 | extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, |
| 2836 | struct vm_area_struct *vma, struct vm_area_struct **pprev, |
| 2837 | unsigned long start, unsigned long end, vm_flags_t newflags); |
| 2838 | |
| 2839 | /* |
| 2840 | * doesn't attempt to fault and will return short. |
| 2841 | */ |
| 2842 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
| 2843 | unsigned int gup_flags, struct page **pages); |
| 2844 | |
| 2845 | static inline bool get_user_page_fast_only(unsigned long addr, |
| 2846 | unsigned int gup_flags, struct page **pagep) |
| 2847 | { |
| 2848 | return get_user_pages_fast_only(start: addr, nr_pages: 1, gup_flags, pages: pagep) == 1; |
| 2849 | } |
| 2850 | /* |
| 2851 | * per-process(per-mm_struct) statistics. |
| 2852 | */ |
| 2853 | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) |
| 2854 | { |
| 2855 | return percpu_counter_read_positive(fbc: &mm->rss_stat[member]); |
| 2856 | } |
| 2857 | |
| 2858 | static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) |
| 2859 | { |
| 2860 | return percpu_counter_sum_positive(fbc: &mm->rss_stat[member]); |
| 2861 | } |
| 2862 | |
| 2863 | void (struct mm_struct *mm, int member); |
| 2864 | |
| 2865 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
| 2866 | { |
| 2867 | percpu_counter_add(fbc: &mm->rss_stat[member], amount: value); |
| 2868 | |
| 2869 | mm_trace_rss_stat(mm, member); |
| 2870 | } |
| 2871 | |
| 2872 | static inline void inc_mm_counter(struct mm_struct *mm, int member) |
| 2873 | { |
| 2874 | percpu_counter_inc(fbc: &mm->rss_stat[member]); |
| 2875 | |
| 2876 | mm_trace_rss_stat(mm, member); |
| 2877 | } |
| 2878 | |
| 2879 | static inline void dec_mm_counter(struct mm_struct *mm, int member) |
| 2880 | { |
| 2881 | percpu_counter_dec(fbc: &mm->rss_stat[member]); |
| 2882 | |
| 2883 | mm_trace_rss_stat(mm, member); |
| 2884 | } |
| 2885 | |
| 2886 | /* Optimized variant when folio is already known not to be anon */ |
| 2887 | static inline int mm_counter_file(struct folio *folio) |
| 2888 | { |
| 2889 | if (folio_test_swapbacked(folio)) |
| 2890 | return MM_SHMEMPAGES; |
| 2891 | return MM_FILEPAGES; |
| 2892 | } |
| 2893 | |
| 2894 | static inline int mm_counter(struct folio *folio) |
| 2895 | { |
| 2896 | if (folio_test_anon(folio)) |
| 2897 | return MM_ANONPAGES; |
| 2898 | return mm_counter_file(folio); |
| 2899 | } |
| 2900 | |
| 2901 | static inline unsigned long (struct mm_struct *mm) |
| 2902 | { |
| 2903 | return get_mm_counter(mm, member: MM_FILEPAGES) + |
| 2904 | get_mm_counter(mm, member: MM_ANONPAGES) + |
| 2905 | get_mm_counter(mm, member: MM_SHMEMPAGES); |
| 2906 | } |
| 2907 | |
| 2908 | static inline unsigned long (struct mm_struct *mm) |
| 2909 | { |
| 2910 | return max(mm->hiwater_rss, get_mm_rss(mm)); |
| 2911 | } |
| 2912 | |
| 2913 | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) |
| 2914 | { |
| 2915 | return max(mm->hiwater_vm, mm->total_vm); |
| 2916 | } |
| 2917 | |
| 2918 | static inline void (struct mm_struct *mm) |
| 2919 | { |
| 2920 | unsigned long = get_mm_rss(mm); |
| 2921 | |
| 2922 | if (data_race(mm->hiwater_rss) < _rss) |
| 2923 | data_race(mm->hiwater_rss = _rss); |
| 2924 | } |
| 2925 | |
| 2926 | static inline void update_hiwater_vm(struct mm_struct *mm) |
| 2927 | { |
| 2928 | if (mm->hiwater_vm < mm->total_vm) |
| 2929 | mm->hiwater_vm = mm->total_vm; |
| 2930 | } |
| 2931 | |
| 2932 | static inline void (struct mm_struct *mm) |
| 2933 | { |
| 2934 | mm->hiwater_rss = get_mm_rss(mm); |
| 2935 | } |
| 2936 | |
| 2937 | static inline void (unsigned long *, |
| 2938 | struct mm_struct *mm) |
| 2939 | { |
| 2940 | unsigned long = get_mm_hiwater_rss(mm); |
| 2941 | |
| 2942 | if (*maxrss < hiwater_rss) |
| 2943 | *maxrss = hiwater_rss; |
| 2944 | } |
| 2945 | |
| 2946 | #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL |
| 2947 | static inline int pte_special(pte_t pte) |
| 2948 | { |
| 2949 | return 0; |
| 2950 | } |
| 2951 | |
| 2952 | static inline pte_t pte_mkspecial(pte_t pte) |
| 2953 | { |
| 2954 | return pte; |
| 2955 | } |
| 2956 | #endif |
| 2957 | |
| 2958 | #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP |
| 2959 | static inline bool pmd_special(pmd_t pmd) |
| 2960 | { |
| 2961 | return false; |
| 2962 | } |
| 2963 | |
| 2964 | static inline pmd_t pmd_mkspecial(pmd_t pmd) |
| 2965 | { |
| 2966 | return pmd; |
| 2967 | } |
| 2968 | #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ |
| 2969 | |
| 2970 | #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP |
| 2971 | static inline bool pud_special(pud_t pud) |
| 2972 | { |
| 2973 | return false; |
| 2974 | } |
| 2975 | |
| 2976 | static inline pud_t pud_mkspecial(pud_t pud) |
| 2977 | { |
| 2978 | return pud; |
| 2979 | } |
| 2980 | #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ |
| 2981 | |
| 2982 | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| 2983 | spinlock_t **ptl); |
| 2984 | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| 2985 | spinlock_t **ptl) |
| 2986 | { |
| 2987 | pte_t *ptep; |
| 2988 | __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); |
| 2989 | return ptep; |
| 2990 | } |
| 2991 | |
| 2992 | #ifdef __PAGETABLE_P4D_FOLDED |
| 2993 | static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
| 2994 | unsigned long address) |
| 2995 | { |
| 2996 | return 0; |
| 2997 | } |
| 2998 | #else |
| 2999 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
| 3000 | #endif |
| 3001 | |
| 3002 | #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) |
| 3003 | static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
| 3004 | unsigned long address) |
| 3005 | { |
| 3006 | return 0; |
| 3007 | } |
| 3008 | static inline void mm_inc_nr_puds(struct mm_struct *mm) {} |
| 3009 | static inline void mm_dec_nr_puds(struct mm_struct *mm) {} |
| 3010 | |
| 3011 | #else |
| 3012 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); |
| 3013 | |
| 3014 | static inline void mm_inc_nr_puds(struct mm_struct *mm) |
| 3015 | { |
| 3016 | if (mm_pud_folded(mm)) |
| 3017 | return; |
| 3018 | atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), v: &mm->pgtables_bytes); |
| 3019 | } |
| 3020 | |
| 3021 | static inline void mm_dec_nr_puds(struct mm_struct *mm) |
| 3022 | { |
| 3023 | if (mm_pud_folded(mm)) |
| 3024 | return; |
| 3025 | atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), v: &mm->pgtables_bytes); |
| 3026 | } |
| 3027 | #endif |
| 3028 | |
| 3029 | #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) |
| 3030 | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, |
| 3031 | unsigned long address) |
| 3032 | { |
| 3033 | return 0; |
| 3034 | } |
| 3035 | |
| 3036 | static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} |
| 3037 | static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} |
| 3038 | |
| 3039 | #else |
| 3040 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
| 3041 | |
| 3042 | static inline void mm_inc_nr_pmds(struct mm_struct *mm) |
| 3043 | { |
| 3044 | if (mm_pmd_folded(mm)) |
| 3045 | return; |
| 3046 | atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), v: &mm->pgtables_bytes); |
| 3047 | } |
| 3048 | |
| 3049 | static inline void mm_dec_nr_pmds(struct mm_struct *mm) |
| 3050 | { |
| 3051 | if (mm_pmd_folded(mm)) |
| 3052 | return; |
| 3053 | atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), v: &mm->pgtables_bytes); |
| 3054 | } |
| 3055 | #endif |
| 3056 | |
| 3057 | #ifdef CONFIG_MMU |
| 3058 | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) |
| 3059 | { |
| 3060 | atomic_long_set(v: &mm->pgtables_bytes, i: 0); |
| 3061 | } |
| 3062 | |
| 3063 | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
| 3064 | { |
| 3065 | return atomic_long_read(v: &mm->pgtables_bytes); |
| 3066 | } |
| 3067 | |
| 3068 | static inline void mm_inc_nr_ptes(struct mm_struct *mm) |
| 3069 | { |
| 3070 | atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), v: &mm->pgtables_bytes); |
| 3071 | } |
| 3072 | |
| 3073 | static inline void mm_dec_nr_ptes(struct mm_struct *mm) |
| 3074 | { |
| 3075 | atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), v: &mm->pgtables_bytes); |
| 3076 | } |
| 3077 | #else |
| 3078 | |
| 3079 | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} |
| 3080 | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
| 3081 | { |
| 3082 | return 0; |
| 3083 | } |
| 3084 | |
| 3085 | static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} |
| 3086 | static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} |
| 3087 | #endif |
| 3088 | |
| 3089 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); |
| 3090 | int __pte_alloc_kernel(pmd_t *pmd); |
| 3091 | |
| 3092 | #if defined(CONFIG_MMU) |
| 3093 | |
| 3094 | static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
| 3095 | unsigned long address) |
| 3096 | { |
| 3097 | return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? |
| 3098 | NULL : p4d_offset(pgd, address); |
| 3099 | } |
| 3100 | |
| 3101 | static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
| 3102 | unsigned long address) |
| 3103 | { |
| 3104 | return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? |
| 3105 | NULL : pud_offset(p4d, address); |
| 3106 | } |
| 3107 | |
| 3108 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
| 3109 | { |
| 3110 | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
| 3111 | NULL: pmd_offset(pud, address); |
| 3112 | } |
| 3113 | #endif /* CONFIG_MMU */ |
| 3114 | |
| 3115 | enum pt_flags { |
| 3116 | PT_kernel = PG_referenced, |
| 3117 | PT_reserved = PG_reserved, |
| 3118 | /* High bits are used for zone/node/section */ |
| 3119 | }; |
| 3120 | |
| 3121 | static inline struct ptdesc *virt_to_ptdesc(const void *x) |
| 3122 | { |
| 3123 | return page_ptdesc(virt_to_page(x)); |
| 3124 | } |
| 3125 | |
| 3126 | /** |
| 3127 | * ptdesc_address - Virtual address of page table. |
| 3128 | * @pt: Page table descriptor. |
| 3129 | * |
| 3130 | * Return: The first byte of the page table described by @pt. |
| 3131 | */ |
| 3132 | static inline void *ptdesc_address(const struct ptdesc *pt) |
| 3133 | { |
| 3134 | return folio_address(ptdesc_folio(pt)); |
| 3135 | } |
| 3136 | |
| 3137 | static inline bool pagetable_is_reserved(struct ptdesc *pt) |
| 3138 | { |
| 3139 | return test_bit(PT_reserved, &pt->pt_flags.f); |
| 3140 | } |
| 3141 | |
| 3142 | /** |
| 3143 | * ptdesc_set_kernel - Mark a ptdesc used to map the kernel |
| 3144 | * @ptdesc: The ptdesc to be marked |
| 3145 | * |
| 3146 | * Kernel page tables often need special handling. Set a flag so that |
| 3147 | * the handling code knows this ptdesc will not be used for userspace. |
| 3148 | */ |
| 3149 | static inline void ptdesc_set_kernel(struct ptdesc *ptdesc) |
| 3150 | { |
| 3151 | set_bit(nr: PT_kernel, addr: &ptdesc->pt_flags.f); |
| 3152 | } |
| 3153 | |
| 3154 | /** |
| 3155 | * ptdesc_clear_kernel - Mark a ptdesc as no longer used to map the kernel |
| 3156 | * @ptdesc: The ptdesc to be unmarked |
| 3157 | * |
| 3158 | * Use when the ptdesc is no longer used to map the kernel and no longer |
| 3159 | * needs special handling. |
| 3160 | */ |
| 3161 | static inline void ptdesc_clear_kernel(struct ptdesc *ptdesc) |
| 3162 | { |
| 3163 | /* |
| 3164 | * Note: the 'PG_referenced' bit does not strictly need to be |
| 3165 | * cleared before freeing the page. But this is nice for |
| 3166 | * symmetry. |
| 3167 | */ |
| 3168 | clear_bit(nr: PT_kernel, addr: &ptdesc->pt_flags.f); |
| 3169 | } |
| 3170 | |
| 3171 | /** |
| 3172 | * ptdesc_test_kernel - Check if a ptdesc is used to map the kernel |
| 3173 | * @ptdesc: The ptdesc being tested |
| 3174 | * |
| 3175 | * Call to tell if the ptdesc used to map the kernel. |
| 3176 | */ |
| 3177 | static inline bool ptdesc_test_kernel(const struct ptdesc *ptdesc) |
| 3178 | { |
| 3179 | return test_bit(PT_kernel, &ptdesc->pt_flags.f); |
| 3180 | } |
| 3181 | |
| 3182 | /** |
| 3183 | * pagetable_alloc - Allocate pagetables |
| 3184 | * @gfp: GFP flags |
| 3185 | * @order: desired pagetable order |
| 3186 | * |
| 3187 | * pagetable_alloc allocates memory for page tables as well as a page table |
| 3188 | * descriptor to describe that memory. |
| 3189 | * |
| 3190 | * Return: The ptdesc describing the allocated page tables. |
| 3191 | */ |
| 3192 | static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) |
| 3193 | { |
| 3194 | struct page *page = alloc_pages_noprof(gfp: gfp | __GFP_COMP, order); |
| 3195 | |
| 3196 | return page_ptdesc(page); |
| 3197 | } |
| 3198 | #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) |
| 3199 | |
| 3200 | static inline void __pagetable_free(struct ptdesc *pt) |
| 3201 | { |
| 3202 | struct page *page = ptdesc_page(pt); |
| 3203 | |
| 3204 | __free_pages(page, order: compound_order(page)); |
| 3205 | } |
| 3206 | |
| 3207 | #ifdef CONFIG_ASYNC_KERNEL_PGTABLE_FREE |
| 3208 | void pagetable_free_kernel(struct ptdesc *pt); |
| 3209 | #else |
| 3210 | static inline void pagetable_free_kernel(struct ptdesc *pt) |
| 3211 | { |
| 3212 | __pagetable_free(pt); |
| 3213 | } |
| 3214 | #endif |
| 3215 | /** |
| 3216 | * pagetable_free - Free pagetables |
| 3217 | * @pt: The page table descriptor |
| 3218 | * |
| 3219 | * pagetable_free frees the memory of all page tables described by a page |
| 3220 | * table descriptor and the memory for the descriptor itself. |
| 3221 | */ |
| 3222 | static inline void pagetable_free(struct ptdesc *pt) |
| 3223 | { |
| 3224 | if (ptdesc_test_kernel(ptdesc: pt)) { |
| 3225 | ptdesc_clear_kernel(ptdesc: pt); |
| 3226 | pagetable_free_kernel(pt); |
| 3227 | } else { |
| 3228 | __pagetable_free(pt); |
| 3229 | } |
| 3230 | } |
| 3231 | |
| 3232 | #if defined(CONFIG_SPLIT_PTE_PTLOCKS) |
| 3233 | #if ALLOC_SPLIT_PTLOCKS |
| 3234 | void __init ptlock_cache_init(void); |
| 3235 | bool ptlock_alloc(struct ptdesc *ptdesc); |
| 3236 | void ptlock_free(struct ptdesc *ptdesc); |
| 3237 | |
| 3238 | static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) |
| 3239 | { |
| 3240 | return ptdesc->ptl; |
| 3241 | } |
| 3242 | #else /* ALLOC_SPLIT_PTLOCKS */ |
| 3243 | static inline void ptlock_cache_init(void) |
| 3244 | { |
| 3245 | } |
| 3246 | |
| 3247 | static inline bool ptlock_alloc(struct ptdesc *ptdesc) |
| 3248 | { |
| 3249 | return true; |
| 3250 | } |
| 3251 | |
| 3252 | static inline void ptlock_free(struct ptdesc *ptdesc) |
| 3253 | { |
| 3254 | } |
| 3255 | |
| 3256 | static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) |
| 3257 | { |
| 3258 | return &ptdesc->ptl; |
| 3259 | } |
| 3260 | #endif /* ALLOC_SPLIT_PTLOCKS */ |
| 3261 | |
| 3262 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 3263 | { |
| 3264 | return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); |
| 3265 | } |
| 3266 | |
| 3267 | static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) |
| 3268 | { |
| 3269 | BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); |
| 3270 | BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); |
| 3271 | return ptlock_ptr(ptdesc: virt_to_ptdesc(x: pte)); |
| 3272 | } |
| 3273 | |
| 3274 | static inline bool ptlock_init(struct ptdesc *ptdesc) |
| 3275 | { |
| 3276 | /* |
| 3277 | * prep_new_page() initialize page->private (and therefore page->ptl) |
| 3278 | * with 0. Make sure nobody took it in use in between. |
| 3279 | * |
| 3280 | * It can happen if arch try to use slab for page table allocation: |
| 3281 | * slab code uses page->slab_cache, which share storage with page->ptl. |
| 3282 | */ |
| 3283 | VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); |
| 3284 | if (!ptlock_alloc(ptdesc)) |
| 3285 | return false; |
| 3286 | spin_lock_init(ptlock_ptr(ptdesc)); |
| 3287 | return true; |
| 3288 | } |
| 3289 | |
| 3290 | #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ |
| 3291 | /* |
| 3292 | * We use mm->page_table_lock to guard all pagetable pages of the mm. |
| 3293 | */ |
| 3294 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 3295 | { |
| 3296 | return &mm->page_table_lock; |
| 3297 | } |
| 3298 | static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) |
| 3299 | { |
| 3300 | return &mm->page_table_lock; |
| 3301 | } |
| 3302 | static inline void ptlock_cache_init(void) {} |
| 3303 | static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } |
| 3304 | static inline void ptlock_free(struct ptdesc *ptdesc) {} |
| 3305 | #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ |
| 3306 | |
| 3307 | static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc) |
| 3308 | { |
| 3309 | return compound_nr(ptdesc_page(ptdesc)); |
| 3310 | } |
| 3311 | |
| 3312 | static inline void __pagetable_ctor(struct ptdesc *ptdesc) |
| 3313 | { |
| 3314 | pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); |
| 3315 | |
| 3316 | __SetPageTable(ptdesc_page(ptdesc)); |
| 3317 | mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc)); |
| 3318 | } |
| 3319 | |
| 3320 | static inline void pagetable_dtor(struct ptdesc *ptdesc) |
| 3321 | { |
| 3322 | pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags)); |
| 3323 | |
| 3324 | ptlock_free(ptdesc); |
| 3325 | __ClearPageTable(ptdesc_page(ptdesc)); |
| 3326 | mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc)); |
| 3327 | } |
| 3328 | |
| 3329 | static inline void pagetable_dtor_free(struct ptdesc *ptdesc) |
| 3330 | { |
| 3331 | pagetable_dtor(ptdesc); |
| 3332 | pagetable_free(pt: ptdesc); |
| 3333 | } |
| 3334 | |
| 3335 | static inline bool pagetable_pte_ctor(struct mm_struct *mm, |
| 3336 | struct ptdesc *ptdesc) |
| 3337 | { |
| 3338 | if (mm != &init_mm && !ptlock_init(ptdesc)) |
| 3339 | return false; |
| 3340 | __pagetable_ctor(ptdesc); |
| 3341 | return true; |
| 3342 | } |
| 3343 | |
| 3344 | pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); |
| 3345 | static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, |
| 3346 | pmd_t *pmdvalp) |
| 3347 | { |
| 3348 | pte_t *pte; |
| 3349 | |
| 3350 | __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); |
| 3351 | return pte; |
| 3352 | } |
| 3353 | static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) |
| 3354 | { |
| 3355 | return __pte_offset_map(pmd, addr, NULL); |
| 3356 | } |
| 3357 | |
| 3358 | pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, |
| 3359 | unsigned long addr, spinlock_t **ptlp); |
| 3360 | static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, |
| 3361 | unsigned long addr, spinlock_t **ptlp) |
| 3362 | { |
| 3363 | pte_t *pte; |
| 3364 | |
| 3365 | __cond_lock(RCU, __cond_lock(*ptlp, |
| 3366 | pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); |
| 3367 | return pte; |
| 3368 | } |
| 3369 | |
| 3370 | pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, |
| 3371 | unsigned long addr, spinlock_t **ptlp); |
| 3372 | pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, |
| 3373 | unsigned long addr, pmd_t *pmdvalp, |
| 3374 | spinlock_t **ptlp); |
| 3375 | |
| 3376 | #define pte_unmap_unlock(pte, ptl) do { \ |
| 3377 | spin_unlock(ptl); \ |
| 3378 | pte_unmap(pte); \ |
| 3379 | } while (0) |
| 3380 | |
| 3381 | #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) |
| 3382 | |
| 3383 | #define pte_alloc_map(mm, pmd, address) \ |
| 3384 | (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) |
| 3385 | |
| 3386 | #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
| 3387 | (pte_alloc(mm, pmd) ? \ |
| 3388 | NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) |
| 3389 | |
| 3390 | #define pte_alloc_kernel(pmd, address) \ |
| 3391 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ |
| 3392 | NULL: pte_offset_kernel(pmd, address)) |
| 3393 | |
| 3394 | #if defined(CONFIG_SPLIT_PMD_PTLOCKS) |
| 3395 | |
| 3396 | static inline struct page *pmd_pgtable_page(pmd_t *pmd) |
| 3397 | { |
| 3398 | unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); |
| 3399 | return virt_to_page((void *)((unsigned long) pmd & mask)); |
| 3400 | } |
| 3401 | |
| 3402 | static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) |
| 3403 | { |
| 3404 | return page_ptdesc(pmd_pgtable_page(pmd)); |
| 3405 | } |
| 3406 | |
| 3407 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 3408 | { |
| 3409 | return ptlock_ptr(ptdesc: pmd_ptdesc(pmd)); |
| 3410 | } |
| 3411 | |
| 3412 | static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) |
| 3413 | { |
| 3414 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 3415 | ptdesc->pmd_huge_pte = NULL; |
| 3416 | #endif |
| 3417 | return ptlock_init(ptdesc); |
| 3418 | } |
| 3419 | |
| 3420 | #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) |
| 3421 | |
| 3422 | #else |
| 3423 | |
| 3424 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 3425 | { |
| 3426 | return &mm->page_table_lock; |
| 3427 | } |
| 3428 | |
| 3429 | static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } |
| 3430 | |
| 3431 | #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) |
| 3432 | |
| 3433 | #endif |
| 3434 | |
| 3435 | static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) |
| 3436 | { |
| 3437 | spinlock_t *ptl = pmd_lockptr(mm, pmd); |
| 3438 | spin_lock(lock: ptl); |
| 3439 | return ptl; |
| 3440 | } |
| 3441 | |
| 3442 | static inline bool pagetable_pmd_ctor(struct mm_struct *mm, |
| 3443 | struct ptdesc *ptdesc) |
| 3444 | { |
| 3445 | if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) |
| 3446 | return false; |
| 3447 | ptdesc_pmd_pts_init(ptdesc); |
| 3448 | __pagetable_ctor(ptdesc); |
| 3449 | return true; |
| 3450 | } |
| 3451 | |
| 3452 | /* |
| 3453 | * No scalability reason to split PUD locks yet, but follow the same pattern |
| 3454 | * as the PMD locks to make it easier if we decide to. The VM should not be |
| 3455 | * considered ready to switch to split PUD locks yet; there may be places |
| 3456 | * which need to be converted from page_table_lock. |
| 3457 | */ |
| 3458 | static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) |
| 3459 | { |
| 3460 | return &mm->page_table_lock; |
| 3461 | } |
| 3462 | |
| 3463 | static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) |
| 3464 | { |
| 3465 | spinlock_t *ptl = pud_lockptr(mm, pud); |
| 3466 | |
| 3467 | spin_lock(lock: ptl); |
| 3468 | return ptl; |
| 3469 | } |
| 3470 | |
| 3471 | static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) |
| 3472 | { |
| 3473 | __pagetable_ctor(ptdesc); |
| 3474 | } |
| 3475 | |
| 3476 | static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) |
| 3477 | { |
| 3478 | __pagetable_ctor(ptdesc); |
| 3479 | } |
| 3480 | |
| 3481 | static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) |
| 3482 | { |
| 3483 | __pagetable_ctor(ptdesc); |
| 3484 | } |
| 3485 | |
| 3486 | extern void __init pagecache_init(void); |
| 3487 | extern void free_initmem(void); |
| 3488 | |
| 3489 | /* |
| 3490 | * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) |
| 3491 | * into the buddy system. The freed pages will be poisoned with pattern |
| 3492 | * "poison" if it's within range [0, UCHAR_MAX]. |
| 3493 | * Return pages freed into the buddy system. |
| 3494 | */ |
| 3495 | extern unsigned long free_reserved_area(void *start, void *end, |
| 3496 | int poison, const char *s); |
| 3497 | |
| 3498 | extern void adjust_managed_page_count(struct page *page, long count); |
| 3499 | |
| 3500 | extern void reserve_bootmem_region(phys_addr_t start, |
| 3501 | phys_addr_t end, int nid); |
| 3502 | |
| 3503 | /* Free the reserved page into the buddy system, so it gets managed. */ |
| 3504 | void free_reserved_page(struct page *page); |
| 3505 | |
| 3506 | static inline void mark_page_reserved(struct page *page) |
| 3507 | { |
| 3508 | SetPageReserved(page); |
| 3509 | adjust_managed_page_count(page, count: -1); |
| 3510 | } |
| 3511 | |
| 3512 | static inline void free_reserved_ptdesc(struct ptdesc *pt) |
| 3513 | { |
| 3514 | free_reserved_page(ptdesc_page(pt)); |
| 3515 | } |
| 3516 | |
| 3517 | /* |
| 3518 | * Default method to free all the __init memory into the buddy system. |
| 3519 | * The freed pages will be poisoned with pattern "poison" if it's within |
| 3520 | * range [0, UCHAR_MAX]. |
| 3521 | * Return pages freed into the buddy system. |
| 3522 | */ |
| 3523 | static inline unsigned long free_initmem_default(int poison) |
| 3524 | { |
| 3525 | extern char __init_begin[], __init_end[]; |
| 3526 | |
| 3527 | return free_reserved_area(start: &__init_begin, end: &__init_end, |
| 3528 | poison, s: "unused kernel image (initmem)" ); |
| 3529 | } |
| 3530 | |
| 3531 | static inline unsigned long get_num_physpages(void) |
| 3532 | { |
| 3533 | int nid; |
| 3534 | unsigned long phys_pages = 0; |
| 3535 | |
| 3536 | for_each_online_node(nid) |
| 3537 | phys_pages += node_present_pages(nid); |
| 3538 | |
| 3539 | return phys_pages; |
| 3540 | } |
| 3541 | |
| 3542 | /* |
| 3543 | * Using memblock node mappings, an architecture may initialise its |
| 3544 | * zones, allocate the backing mem_map and account for memory holes in an |
| 3545 | * architecture independent manner. |
| 3546 | * |
| 3547 | * An architecture is expected to register range of page frames backed by |
| 3548 | * physical memory with memblock_add[_node]() before calling |
| 3549 | * free_area_init() passing in the PFN each zone ends at. At a basic |
| 3550 | * usage, an architecture is expected to do something like |
| 3551 | * |
| 3552 | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, |
| 3553 | * max_highmem_pfn}; |
| 3554 | * for_each_valid_physical_page_range() |
| 3555 | * memblock_add_node(base, size, nid, MEMBLOCK_NONE) |
| 3556 | * free_area_init(max_zone_pfns); |
| 3557 | */ |
| 3558 | void free_area_init(unsigned long *max_zone_pfn); |
| 3559 | unsigned long node_map_pfn_alignment(void); |
| 3560 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, |
| 3561 | unsigned long end_pfn); |
| 3562 | extern void get_pfn_range_for_nid(unsigned int nid, |
| 3563 | unsigned long *start_pfn, unsigned long *end_pfn); |
| 3564 | |
| 3565 | #ifndef CONFIG_NUMA |
| 3566 | static inline int early_pfn_to_nid(unsigned long pfn) |
| 3567 | { |
| 3568 | return 0; |
| 3569 | } |
| 3570 | #else |
| 3571 | /* please see mm/page_alloc.c */ |
| 3572 | extern int __meminit early_pfn_to_nid(unsigned long pfn); |
| 3573 | #endif |
| 3574 | |
| 3575 | extern void mem_init(void); |
| 3576 | extern void __init mmap_init(void); |
| 3577 | |
| 3578 | extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); |
| 3579 | static inline void show_mem(void) |
| 3580 | { |
| 3581 | __show_mem(flags: 0, NULL, max_zone_idx: MAX_NR_ZONES - 1); |
| 3582 | } |
| 3583 | extern long si_mem_available(void); |
| 3584 | extern void si_meminfo(struct sysinfo * val); |
| 3585 | extern void si_meminfo_node(struct sysinfo *val, int nid); |
| 3586 | |
| 3587 | extern __printf(3, 4) |
| 3588 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); |
| 3589 | |
| 3590 | extern void setup_per_cpu_pageset(void); |
| 3591 | |
| 3592 | /* nommu.c */ |
| 3593 | extern atomic_long_t mmap_pages_allocated; |
| 3594 | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); |
| 3595 | |
| 3596 | /* interval_tree.c */ |
| 3597 | void vma_interval_tree_insert(struct vm_area_struct *node, |
| 3598 | struct rb_root_cached *root); |
| 3599 | void vma_interval_tree_insert_after(struct vm_area_struct *node, |
| 3600 | struct vm_area_struct *prev, |
| 3601 | struct rb_root_cached *root); |
| 3602 | void vma_interval_tree_remove(struct vm_area_struct *node, |
| 3603 | struct rb_root_cached *root); |
| 3604 | struct vm_area_struct *vma_interval_tree_subtree_search(struct vm_area_struct *node, |
| 3605 | unsigned long start, unsigned long last); |
| 3606 | struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, |
| 3607 | unsigned long start, unsigned long last); |
| 3608 | struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, |
| 3609 | unsigned long start, unsigned long last); |
| 3610 | |
| 3611 | #define vma_interval_tree_foreach(vma, root, start, last) \ |
| 3612 | for (vma = vma_interval_tree_iter_first(root, start, last); \ |
| 3613 | vma; vma = vma_interval_tree_iter_next(vma, start, last)) |
| 3614 | |
| 3615 | void anon_vma_interval_tree_insert(struct anon_vma_chain *node, |
| 3616 | struct rb_root_cached *root); |
| 3617 | void anon_vma_interval_tree_remove(struct anon_vma_chain *node, |
| 3618 | struct rb_root_cached *root); |
| 3619 | struct anon_vma_chain * |
| 3620 | anon_vma_interval_tree_iter_first(struct rb_root_cached *root, |
| 3621 | unsigned long start, unsigned long last); |
| 3622 | struct anon_vma_chain *anon_vma_interval_tree_iter_next( |
| 3623 | struct anon_vma_chain *node, unsigned long start, unsigned long last); |
| 3624 | #ifdef CONFIG_DEBUG_VM_RB |
| 3625 | void anon_vma_interval_tree_verify(struct anon_vma_chain *node); |
| 3626 | #endif |
| 3627 | |
| 3628 | #define anon_vma_interval_tree_foreach(avc, root, start, last) \ |
| 3629 | for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ |
| 3630 | avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) |
| 3631 | |
| 3632 | /* mmap.c */ |
| 3633 | extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin); |
| 3634 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
| 3635 | extern void exit_mmap(struct mm_struct *); |
| 3636 | bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, |
| 3637 | unsigned long addr, bool write); |
| 3638 | |
| 3639 | static inline int check_data_rlimit(unsigned long rlim, |
| 3640 | unsigned long new, |
| 3641 | unsigned long start, |
| 3642 | unsigned long end_data, |
| 3643 | unsigned long start_data) |
| 3644 | { |
| 3645 | if (rlim < RLIM_INFINITY) { |
| 3646 | if (((new - start) + (end_data - start_data)) > rlim) |
| 3647 | return -ENOSPC; |
| 3648 | } |
| 3649 | |
| 3650 | return 0; |
| 3651 | } |
| 3652 | |
| 3653 | extern int mm_take_all_locks(struct mm_struct *mm); |
| 3654 | extern void mm_drop_all_locks(struct mm_struct *mm); |
| 3655 | |
| 3656 | extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| 3657 | extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| 3658 | extern struct file *get_mm_exe_file(struct mm_struct *mm); |
| 3659 | extern struct file *get_task_exe_file(struct task_struct *task); |
| 3660 | |
| 3661 | extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); |
| 3662 | extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); |
| 3663 | |
| 3664 | extern bool vma_is_special_mapping(const struct vm_area_struct *vma, |
| 3665 | const struct vm_special_mapping *sm); |
| 3666 | struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, |
| 3667 | unsigned long addr, unsigned long len, |
| 3668 | vm_flags_t vm_flags, |
| 3669 | const struct vm_special_mapping *spec); |
| 3670 | |
| 3671 | unsigned long randomize_stack_top(unsigned long stack_top); |
| 3672 | unsigned long randomize_page(unsigned long start, unsigned long range); |
| 3673 | |
| 3674 | unsigned long |
| 3675 | __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| 3676 | unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); |
| 3677 | |
| 3678 | static inline unsigned long |
| 3679 | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| 3680 | unsigned long pgoff, unsigned long flags) |
| 3681 | { |
| 3682 | return __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags: 0); |
| 3683 | } |
| 3684 | |
| 3685 | extern unsigned long do_mmap(struct file *file, unsigned long addr, |
| 3686 | unsigned long len, unsigned long prot, unsigned long flags, |
| 3687 | vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, |
| 3688 | struct list_head *uf); |
| 3689 | extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, |
| 3690 | unsigned long start, size_t len, struct list_head *uf, |
| 3691 | bool unlock); |
| 3692 | int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 3693 | struct mm_struct *mm, unsigned long start, |
| 3694 | unsigned long end, struct list_head *uf, bool unlock); |
| 3695 | extern int do_munmap(struct mm_struct *, unsigned long, size_t, |
| 3696 | struct list_head *uf); |
| 3697 | extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); |
| 3698 | |
| 3699 | #ifdef CONFIG_MMU |
| 3700 | extern int __mm_populate(unsigned long addr, unsigned long len, |
| 3701 | int ignore_errors); |
| 3702 | static inline void mm_populate(unsigned long addr, unsigned long len) |
| 3703 | { |
| 3704 | /* Ignore errors */ |
| 3705 | (void) __mm_populate(addr, len, ignore_errors: 1); |
| 3706 | } |
| 3707 | #else |
| 3708 | static inline void mm_populate(unsigned long addr, unsigned long len) {} |
| 3709 | #endif |
| 3710 | |
| 3711 | /* This takes the mm semaphore itself */ |
| 3712 | extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); |
| 3713 | extern int vm_munmap(unsigned long, size_t); |
| 3714 | extern unsigned long __must_check vm_mmap(struct file *, unsigned long, |
| 3715 | unsigned long, unsigned long, |
| 3716 | unsigned long, unsigned long); |
| 3717 | |
| 3718 | struct vm_unmapped_area_info { |
| 3719 | #define VM_UNMAPPED_AREA_TOPDOWN 1 |
| 3720 | unsigned long flags; |
| 3721 | unsigned long length; |
| 3722 | unsigned long low_limit; |
| 3723 | unsigned long high_limit; |
| 3724 | unsigned long align_mask; |
| 3725 | unsigned long align_offset; |
| 3726 | unsigned long start_gap; |
| 3727 | }; |
| 3728 | |
| 3729 | extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); |
| 3730 | |
| 3731 | /* truncate.c */ |
| 3732 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart); |
| 3733 | void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, |
| 3734 | uoff_t lend); |
| 3735 | void truncate_inode_pages_final(struct address_space *mapping); |
| 3736 | |
| 3737 | /* generic vm_area_ops exported for stackable file systems */ |
| 3738 | extern vm_fault_t filemap_fault(struct vm_fault *vmf); |
| 3739 | extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, |
| 3740 | pgoff_t start_pgoff, pgoff_t end_pgoff); |
| 3741 | extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); |
| 3742 | |
| 3743 | extern unsigned long stack_guard_gap; |
| 3744 | /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ |
| 3745 | int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); |
| 3746 | struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); |
| 3747 | |
| 3748 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
| 3749 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
| 3750 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
| 3751 | struct vm_area_struct **pprev); |
| 3752 | |
| 3753 | /* |
| 3754 | * Look up the first VMA which intersects the interval [start_addr, end_addr) |
| 3755 | * NULL if none. Assume start_addr < end_addr. |
| 3756 | */ |
| 3757 | struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, |
| 3758 | unsigned long start_addr, unsigned long end_addr); |
| 3759 | |
| 3760 | /** |
| 3761 | * vma_lookup() - Find a VMA at a specific address |
| 3762 | * @mm: The process address space. |
| 3763 | * @addr: The user address. |
| 3764 | * |
| 3765 | * Return: The vm_area_struct at the given address, %NULL otherwise. |
| 3766 | */ |
| 3767 | static inline |
| 3768 | struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) |
| 3769 | { |
| 3770 | return mtree_load(mt: &mm->mm_mt, index: addr); |
| 3771 | } |
| 3772 | |
| 3773 | static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma) |
| 3774 | { |
| 3775 | if (vma->vm_flags & VM_GROWSDOWN) |
| 3776 | return stack_guard_gap; |
| 3777 | |
| 3778 | /* See reasoning around the VM_SHADOW_STACK definition */ |
| 3779 | if (vma->vm_flags & VM_SHADOW_STACK) |
| 3780 | return PAGE_SIZE; |
| 3781 | |
| 3782 | return 0; |
| 3783 | } |
| 3784 | |
| 3785 | static inline unsigned long vm_start_gap(const struct vm_area_struct *vma) |
| 3786 | { |
| 3787 | unsigned long gap = stack_guard_start_gap(vma); |
| 3788 | unsigned long vm_start = vma->vm_start; |
| 3789 | |
| 3790 | vm_start -= gap; |
| 3791 | if (vm_start > vma->vm_start) |
| 3792 | vm_start = 0; |
| 3793 | return vm_start; |
| 3794 | } |
| 3795 | |
| 3796 | static inline unsigned long vm_end_gap(const struct vm_area_struct *vma) |
| 3797 | { |
| 3798 | unsigned long vm_end = vma->vm_end; |
| 3799 | |
| 3800 | if (vma->vm_flags & VM_GROWSUP) { |
| 3801 | vm_end += stack_guard_gap; |
| 3802 | if (vm_end < vma->vm_end) |
| 3803 | vm_end = -PAGE_SIZE; |
| 3804 | } |
| 3805 | return vm_end; |
| 3806 | } |
| 3807 | |
| 3808 | static inline unsigned long vma_pages(const struct vm_area_struct *vma) |
| 3809 | { |
| 3810 | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| 3811 | } |
| 3812 | |
| 3813 | static inline unsigned long vma_desc_size(const struct vm_area_desc *desc) |
| 3814 | { |
| 3815 | return desc->end - desc->start; |
| 3816 | } |
| 3817 | |
| 3818 | static inline unsigned long vma_desc_pages(const struct vm_area_desc *desc) |
| 3819 | { |
| 3820 | return vma_desc_size(desc) >> PAGE_SHIFT; |
| 3821 | } |
| 3822 | |
| 3823 | /** |
| 3824 | * mmap_action_remap - helper for mmap_prepare hook to specify that a pure PFN |
| 3825 | * remap is required. |
| 3826 | * @desc: The VMA descriptor for the VMA requiring remap. |
| 3827 | * @start: The virtual address to start the remap from, must be within the VMA. |
| 3828 | * @start_pfn: The first PFN in the range to remap. |
| 3829 | * @size: The size of the range to remap, in bytes, at most spanning to the end |
| 3830 | * of the VMA. |
| 3831 | */ |
| 3832 | static inline void mmap_action_remap(struct vm_area_desc *desc, |
| 3833 | unsigned long start, |
| 3834 | unsigned long start_pfn, |
| 3835 | unsigned long size) |
| 3836 | { |
| 3837 | struct mmap_action *action = &desc->action; |
| 3838 | |
| 3839 | /* [start, start + size) must be within the VMA. */ |
| 3840 | WARN_ON_ONCE(start < desc->start || start >= desc->end); |
| 3841 | WARN_ON_ONCE(start + size > desc->end); |
| 3842 | |
| 3843 | action->type = MMAP_REMAP_PFN; |
| 3844 | action->remap.start = start; |
| 3845 | action->remap.start_pfn = start_pfn; |
| 3846 | action->remap.size = size; |
| 3847 | action->remap.pgprot = desc->page_prot; |
| 3848 | } |
| 3849 | |
| 3850 | /** |
| 3851 | * mmap_action_remap_full - helper for mmap_prepare hook to specify that the |
| 3852 | * entirety of a VMA should be PFN remapped. |
| 3853 | * @desc: The VMA descriptor for the VMA requiring remap. |
| 3854 | * @start_pfn: The first PFN in the range to remap. |
| 3855 | */ |
| 3856 | static inline void mmap_action_remap_full(struct vm_area_desc *desc, |
| 3857 | unsigned long start_pfn) |
| 3858 | { |
| 3859 | mmap_action_remap(desc, start: desc->start, start_pfn, size: vma_desc_size(desc)); |
| 3860 | } |
| 3861 | |
| 3862 | /** |
| 3863 | * mmap_action_ioremap - helper for mmap_prepare hook to specify that a pure PFN |
| 3864 | * I/O remap is required. |
| 3865 | * @desc: The VMA descriptor for the VMA requiring remap. |
| 3866 | * @start: The virtual address to start the remap from, must be within the VMA. |
| 3867 | * @start_pfn: The first PFN in the range to remap. |
| 3868 | * @size: The size of the range to remap, in bytes, at most spanning to the end |
| 3869 | * of the VMA. |
| 3870 | */ |
| 3871 | static inline void mmap_action_ioremap(struct vm_area_desc *desc, |
| 3872 | unsigned long start, |
| 3873 | unsigned long start_pfn, |
| 3874 | unsigned long size) |
| 3875 | { |
| 3876 | mmap_action_remap(desc, start, start_pfn, size); |
| 3877 | desc->action.type = MMAP_IO_REMAP_PFN; |
| 3878 | } |
| 3879 | |
| 3880 | /** |
| 3881 | * mmap_action_ioremap_full - helper for mmap_prepare hook to specify that the |
| 3882 | * entirety of a VMA should be PFN I/O remapped. |
| 3883 | * @desc: The VMA descriptor for the VMA requiring remap. |
| 3884 | * @start_pfn: The first PFN in the range to remap. |
| 3885 | */ |
| 3886 | static inline void mmap_action_ioremap_full(struct vm_area_desc *desc, |
| 3887 | unsigned long start_pfn) |
| 3888 | { |
| 3889 | mmap_action_ioremap(desc, start: desc->start, start_pfn, size: vma_desc_size(desc)); |
| 3890 | } |
| 3891 | |
| 3892 | void mmap_action_prepare(struct mmap_action *action, |
| 3893 | struct vm_area_desc *desc); |
| 3894 | int mmap_action_complete(struct mmap_action *action, |
| 3895 | struct vm_area_struct *vma); |
| 3896 | |
| 3897 | /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ |
| 3898 | static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, |
| 3899 | unsigned long vm_start, unsigned long vm_end) |
| 3900 | { |
| 3901 | struct vm_area_struct *vma = vma_lookup(mm, addr: vm_start); |
| 3902 | |
| 3903 | if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) |
| 3904 | vma = NULL; |
| 3905 | |
| 3906 | return vma; |
| 3907 | } |
| 3908 | |
| 3909 | static inline bool range_in_vma(const struct vm_area_struct *vma, |
| 3910 | unsigned long start, unsigned long end) |
| 3911 | { |
| 3912 | return (vma && vma->vm_start <= start && end <= vma->vm_end); |
| 3913 | } |
| 3914 | |
| 3915 | #ifdef CONFIG_MMU |
| 3916 | pgprot_t vm_get_page_prot(vm_flags_t vm_flags); |
| 3917 | void vma_set_page_prot(struct vm_area_struct *vma); |
| 3918 | #else |
| 3919 | static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags) |
| 3920 | { |
| 3921 | return __pgprot(0); |
| 3922 | } |
| 3923 | static inline void vma_set_page_prot(struct vm_area_struct *vma) |
| 3924 | { |
| 3925 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| 3926 | } |
| 3927 | #endif |
| 3928 | |
| 3929 | void vma_set_file(struct vm_area_struct *vma, struct file *file); |
| 3930 | |
| 3931 | #ifdef CONFIG_NUMA_BALANCING |
| 3932 | unsigned long change_prot_numa(struct vm_area_struct *vma, |
| 3933 | unsigned long start, unsigned long end); |
| 3934 | #endif |
| 3935 | |
| 3936 | struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, |
| 3937 | unsigned long addr); |
| 3938 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
| 3939 | unsigned long pfn, unsigned long size, pgprot_t pgprot); |
| 3940 | |
| 3941 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
| 3942 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, |
| 3943 | struct page **pages, unsigned long *num); |
| 3944 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, |
| 3945 | unsigned long num); |
| 3946 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, |
| 3947 | unsigned long num); |
| 3948 | vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, |
| 3949 | bool write); |
| 3950 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
| 3951 | unsigned long pfn); |
| 3952 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, |
| 3953 | unsigned long pfn, pgprot_t pgprot); |
| 3954 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
| 3955 | unsigned long pfn); |
| 3956 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
| 3957 | unsigned long addr, unsigned long pfn); |
| 3958 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); |
| 3959 | |
| 3960 | static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, |
| 3961 | unsigned long addr, struct page *page) |
| 3962 | { |
| 3963 | int err = vm_insert_page(vma, addr, page); |
| 3964 | |
| 3965 | if (err == -ENOMEM) |
| 3966 | return VM_FAULT_OOM; |
| 3967 | if (err < 0 && err != -EBUSY) |
| 3968 | return VM_FAULT_SIGBUS; |
| 3969 | |
| 3970 | return VM_FAULT_NOPAGE; |
| 3971 | } |
| 3972 | |
| 3973 | #ifndef io_remap_pfn_range_pfn |
| 3974 | static inline unsigned long io_remap_pfn_range_pfn(unsigned long pfn, |
| 3975 | unsigned long size) |
| 3976 | { |
| 3977 | return pfn; |
| 3978 | } |
| 3979 | #endif |
| 3980 | |
| 3981 | static inline int io_remap_pfn_range(struct vm_area_struct *vma, |
| 3982 | unsigned long addr, unsigned long orig_pfn, |
| 3983 | unsigned long size, pgprot_t orig_prot) |
| 3984 | { |
| 3985 | const unsigned long pfn = io_remap_pfn_range_pfn(pfn: orig_pfn, size); |
| 3986 | const pgprot_t prot = pgprot_decrypted(orig_prot); |
| 3987 | |
| 3988 | return remap_pfn_range(vma, addr, pfn, size, pgprot: prot); |
| 3989 | } |
| 3990 | |
| 3991 | static inline vm_fault_t vmf_error(int err) |
| 3992 | { |
| 3993 | if (err == -ENOMEM) |
| 3994 | return VM_FAULT_OOM; |
| 3995 | else if (err == -EHWPOISON) |
| 3996 | return VM_FAULT_HWPOISON; |
| 3997 | return VM_FAULT_SIGBUS; |
| 3998 | } |
| 3999 | |
| 4000 | /* |
| 4001 | * Convert errno to return value for ->page_mkwrite() calls. |
| 4002 | * |
| 4003 | * This should eventually be merged with vmf_error() above, but will need a |
| 4004 | * careful audit of all vmf_error() callers. |
| 4005 | */ |
| 4006 | static inline vm_fault_t vmf_fs_error(int err) |
| 4007 | { |
| 4008 | if (err == 0) |
| 4009 | return VM_FAULT_LOCKED; |
| 4010 | if (err == -EFAULT || err == -EAGAIN) |
| 4011 | return VM_FAULT_NOPAGE; |
| 4012 | if (err == -ENOMEM) |
| 4013 | return VM_FAULT_OOM; |
| 4014 | /* -ENOSPC, -EDQUOT, -EIO ... */ |
| 4015 | return VM_FAULT_SIGBUS; |
| 4016 | } |
| 4017 | |
| 4018 | static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) |
| 4019 | { |
| 4020 | if (vm_fault & VM_FAULT_OOM) |
| 4021 | return -ENOMEM; |
| 4022 | if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| 4023 | return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; |
| 4024 | if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) |
| 4025 | return -EFAULT; |
| 4026 | return 0; |
| 4027 | } |
| 4028 | |
| 4029 | /* |
| 4030 | * Indicates whether GUP can follow a PROT_NONE mapped page, or whether |
| 4031 | * a (NUMA hinting) fault is required. |
| 4032 | */ |
| 4033 | static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma, |
| 4034 | unsigned int flags) |
| 4035 | { |
| 4036 | /* |
| 4037 | * If callers don't want to honor NUMA hinting faults, no need to |
| 4038 | * determine if we would actually have to trigger a NUMA hinting fault. |
| 4039 | */ |
| 4040 | if (!(flags & FOLL_HONOR_NUMA_FAULT)) |
| 4041 | return true; |
| 4042 | |
| 4043 | /* |
| 4044 | * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. |
| 4045 | * |
| 4046 | * Requiring a fault here even for inaccessible VMAs would mean that |
| 4047 | * FOLL_FORCE cannot make any progress, because handle_mm_fault() |
| 4048 | * refuses to process NUMA hinting faults in inaccessible VMAs. |
| 4049 | */ |
| 4050 | return !vma_is_accessible(vma); |
| 4051 | } |
| 4052 | |
| 4053 | typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); |
| 4054 | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, |
| 4055 | unsigned long size, pte_fn_t fn, void *data); |
| 4056 | extern int apply_to_existing_page_range(struct mm_struct *mm, |
| 4057 | unsigned long address, unsigned long size, |
| 4058 | pte_fn_t fn, void *data); |
| 4059 | |
| 4060 | #ifdef CONFIG_PAGE_POISONING |
| 4061 | extern void __kernel_poison_pages(struct page *page, int numpages); |
| 4062 | extern void __kernel_unpoison_pages(struct page *page, int numpages); |
| 4063 | extern bool _page_poisoning_enabled_early; |
| 4064 | DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); |
| 4065 | static inline bool page_poisoning_enabled(void) |
| 4066 | { |
| 4067 | return _page_poisoning_enabled_early; |
| 4068 | } |
| 4069 | /* |
| 4070 | * For use in fast paths after init_mem_debugging() has run, or when a |
| 4071 | * false negative result is not harmful when called too early. |
| 4072 | */ |
| 4073 | static inline bool page_poisoning_enabled_static(void) |
| 4074 | { |
| 4075 | return static_branch_unlikely(&_page_poisoning_enabled); |
| 4076 | } |
| 4077 | static inline void kernel_poison_pages(struct page *page, int numpages) |
| 4078 | { |
| 4079 | if (page_poisoning_enabled_static()) |
| 4080 | __kernel_poison_pages(page, numpages); |
| 4081 | } |
| 4082 | static inline void kernel_unpoison_pages(struct page *page, int numpages) |
| 4083 | { |
| 4084 | if (page_poisoning_enabled_static()) |
| 4085 | __kernel_unpoison_pages(page, numpages); |
| 4086 | } |
| 4087 | #else |
| 4088 | static inline bool page_poisoning_enabled(void) { return false; } |
| 4089 | static inline bool page_poisoning_enabled_static(void) { return false; } |
| 4090 | static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } |
| 4091 | static inline void kernel_poison_pages(struct page *page, int numpages) { } |
| 4092 | static inline void kernel_unpoison_pages(struct page *page, int numpages) { } |
| 4093 | #endif |
| 4094 | |
| 4095 | DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
| 4096 | static inline bool want_init_on_alloc(gfp_t flags) |
| 4097 | { |
| 4098 | if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| 4099 | &init_on_alloc)) |
| 4100 | return true; |
| 4101 | return flags & __GFP_ZERO; |
| 4102 | } |
| 4103 | |
| 4104 | DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); |
| 4105 | static inline bool want_init_on_free(void) |
| 4106 | { |
| 4107 | return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, |
| 4108 | &init_on_free); |
| 4109 | } |
| 4110 | |
| 4111 | extern bool _debug_pagealloc_enabled_early; |
| 4112 | DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); |
| 4113 | |
| 4114 | static inline bool debug_pagealloc_enabled(void) |
| 4115 | { |
| 4116 | return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
| 4117 | _debug_pagealloc_enabled_early; |
| 4118 | } |
| 4119 | |
| 4120 | /* |
| 4121 | * For use in fast paths after mem_debugging_and_hardening_init() has run, |
| 4122 | * or when a false negative result is not harmful when called too early. |
| 4123 | */ |
| 4124 | static inline bool debug_pagealloc_enabled_static(void) |
| 4125 | { |
| 4126 | if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) |
| 4127 | return false; |
| 4128 | |
| 4129 | return static_branch_unlikely(&_debug_pagealloc_enabled); |
| 4130 | } |
| 4131 | |
| 4132 | /* |
| 4133 | * To support DEBUG_PAGEALLOC architecture must ensure that |
| 4134 | * __kernel_map_pages() never fails |
| 4135 | */ |
| 4136 | extern void __kernel_map_pages(struct page *page, int numpages, int enable); |
| 4137 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 4138 | static inline void debug_pagealloc_map_pages(struct page *page, int numpages) |
| 4139 | { |
| 4140 | if (debug_pagealloc_enabled_static()) |
| 4141 | __kernel_map_pages(page, numpages, enable: 1); |
| 4142 | } |
| 4143 | |
| 4144 | static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) |
| 4145 | { |
| 4146 | if (debug_pagealloc_enabled_static()) |
| 4147 | __kernel_map_pages(page, numpages, enable: 0); |
| 4148 | } |
| 4149 | |
| 4150 | extern unsigned int _debug_guardpage_minorder; |
| 4151 | DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); |
| 4152 | |
| 4153 | static inline unsigned int debug_guardpage_minorder(void) |
| 4154 | { |
| 4155 | return _debug_guardpage_minorder; |
| 4156 | } |
| 4157 | |
| 4158 | static inline bool debug_guardpage_enabled(void) |
| 4159 | { |
| 4160 | return static_branch_unlikely(&_debug_guardpage_enabled); |
| 4161 | } |
| 4162 | |
| 4163 | static inline bool page_is_guard(const struct page *page) |
| 4164 | { |
| 4165 | if (!debug_guardpage_enabled()) |
| 4166 | return false; |
| 4167 | |
| 4168 | return PageGuard(page); |
| 4169 | } |
| 4170 | |
| 4171 | bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); |
| 4172 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
| 4173 | unsigned int order) |
| 4174 | { |
| 4175 | if (!debug_guardpage_enabled()) |
| 4176 | return false; |
| 4177 | return __set_page_guard(zone, page, order); |
| 4178 | } |
| 4179 | |
| 4180 | void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); |
| 4181 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
| 4182 | unsigned int order) |
| 4183 | { |
| 4184 | if (!debug_guardpage_enabled()) |
| 4185 | return; |
| 4186 | __clear_page_guard(zone, page, order); |
| 4187 | } |
| 4188 | |
| 4189 | #else /* CONFIG_DEBUG_PAGEALLOC */ |
| 4190 | static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} |
| 4191 | static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} |
| 4192 | static inline unsigned int debug_guardpage_minorder(void) { return 0; } |
| 4193 | static inline bool debug_guardpage_enabled(void) { return false; } |
| 4194 | static inline bool page_is_guard(const struct page *page) { return false; } |
| 4195 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
| 4196 | unsigned int order) { return false; } |
| 4197 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
| 4198 | unsigned int order) {} |
| 4199 | #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| 4200 | |
| 4201 | #ifdef __HAVE_ARCH_GATE_AREA |
| 4202 | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); |
| 4203 | extern int in_gate_area_no_mm(unsigned long addr); |
| 4204 | extern int in_gate_area(struct mm_struct *mm, unsigned long addr); |
| 4205 | #else |
| 4206 | static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
| 4207 | { |
| 4208 | return NULL; |
| 4209 | } |
| 4210 | static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } |
| 4211 | static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) |
| 4212 | { |
| 4213 | return 0; |
| 4214 | } |
| 4215 | #endif /* __HAVE_ARCH_GATE_AREA */ |
| 4216 | |
| 4217 | bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm); |
| 4218 | |
| 4219 | void drop_slab(void); |
| 4220 | |
| 4221 | #ifndef CONFIG_MMU |
| 4222 | #define randomize_va_space 0 |
| 4223 | #else |
| 4224 | extern int randomize_va_space; |
| 4225 | #endif |
| 4226 | |
| 4227 | const char * arch_vma_name(struct vm_area_struct *vma); |
| 4228 | #ifdef CONFIG_MMU |
| 4229 | void print_vma_addr(char *prefix, unsigned long rip); |
| 4230 | #else |
| 4231 | static inline void print_vma_addr(char *prefix, unsigned long rip) |
| 4232 | { |
| 4233 | } |
| 4234 | #endif |
| 4235 | |
| 4236 | void *sparse_buffer_alloc(unsigned long size); |
| 4237 | unsigned long section_map_size(void); |
| 4238 | struct page * __populate_section_memmap(unsigned long pfn, |
| 4239 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| 4240 | struct dev_pagemap *pgmap); |
| 4241 | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); |
| 4242 | p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); |
| 4243 | pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); |
| 4244 | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); |
| 4245 | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
| 4246 | struct vmem_altmap *altmap, unsigned long ptpfn, |
| 4247 | unsigned long flags); |
| 4248 | void *vmemmap_alloc_block(unsigned long size, int node); |
| 4249 | struct vmem_altmap; |
| 4250 | void *vmemmap_alloc_block_buf(unsigned long size, int node, |
| 4251 | struct vmem_altmap *altmap); |
| 4252 | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); |
| 4253 | void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, |
| 4254 | unsigned long addr, unsigned long next); |
| 4255 | int vmemmap_check_pmd(pmd_t *pmd, int node, |
| 4256 | unsigned long addr, unsigned long next); |
| 4257 | int vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| 4258 | int node, struct vmem_altmap *altmap); |
| 4259 | int vmemmap_populate_hugepages(unsigned long start, unsigned long end, |
| 4260 | int node, struct vmem_altmap *altmap); |
| 4261 | int vmemmap_populate(unsigned long start, unsigned long end, int node, |
| 4262 | struct vmem_altmap *altmap); |
| 4263 | int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, |
| 4264 | unsigned long headsize); |
| 4265 | int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, |
| 4266 | unsigned long headsize); |
| 4267 | void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, |
| 4268 | unsigned long headsize); |
| 4269 | void vmemmap_populate_print_last(void); |
| 4270 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 4271 | void vmemmap_free(unsigned long start, unsigned long end, |
| 4272 | struct vmem_altmap *altmap); |
| 4273 | #endif |
| 4274 | |
| 4275 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 4276 | static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) |
| 4277 | { |
| 4278 | /* number of pfns from base where pfn_to_page() is valid */ |
| 4279 | if (altmap) |
| 4280 | return altmap->reserve + altmap->free; |
| 4281 | return 0; |
| 4282 | } |
| 4283 | |
| 4284 | static inline void vmem_altmap_free(struct vmem_altmap *altmap, |
| 4285 | unsigned long nr_pfns) |
| 4286 | { |
| 4287 | altmap->alloc -= nr_pfns; |
| 4288 | } |
| 4289 | #else |
| 4290 | static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap) |
| 4291 | { |
| 4292 | return 0; |
| 4293 | } |
| 4294 | |
| 4295 | static inline void vmem_altmap_free(struct vmem_altmap *altmap, |
| 4296 | unsigned long nr_pfns) |
| 4297 | { |
| 4298 | } |
| 4299 | #endif |
| 4300 | |
| 4301 | #define VMEMMAP_RESERVE_NR 2 |
| 4302 | #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP |
| 4303 | static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, |
| 4304 | struct dev_pagemap *pgmap) |
| 4305 | { |
| 4306 | unsigned long nr_pages; |
| 4307 | unsigned long nr_vmemmap_pages; |
| 4308 | |
| 4309 | if (!pgmap || !is_power_of_2(n: sizeof(struct page))) |
| 4310 | return false; |
| 4311 | |
| 4312 | nr_pages = pgmap_vmemmap_nr(pgmap); |
| 4313 | nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); |
| 4314 | /* |
| 4315 | * For vmemmap optimization with DAX we need minimum 2 vmemmap |
| 4316 | * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst |
| 4317 | */ |
| 4318 | return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); |
| 4319 | } |
| 4320 | /* |
| 4321 | * If we don't have an architecture override, use the generic rule |
| 4322 | */ |
| 4323 | #ifndef vmemmap_can_optimize |
| 4324 | #define vmemmap_can_optimize __vmemmap_can_optimize |
| 4325 | #endif |
| 4326 | |
| 4327 | #else |
| 4328 | static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, |
| 4329 | struct dev_pagemap *pgmap) |
| 4330 | { |
| 4331 | return false; |
| 4332 | } |
| 4333 | #endif |
| 4334 | |
| 4335 | enum mf_flags { |
| 4336 | MF_COUNT_INCREASED = 1 << 0, |
| 4337 | MF_ACTION_REQUIRED = 1 << 1, |
| 4338 | MF_MUST_KILL = 1 << 2, |
| 4339 | MF_SOFT_OFFLINE = 1 << 3, |
| 4340 | MF_UNPOISON = 1 << 4, |
| 4341 | MF_SW_SIMULATED = 1 << 5, |
| 4342 | MF_NO_RETRY = 1 << 6, |
| 4343 | MF_MEM_PRE_REMOVE = 1 << 7, |
| 4344 | }; |
| 4345 | int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, |
| 4346 | unsigned long count, int mf_flags); |
| 4347 | extern int memory_failure(unsigned long pfn, int flags); |
| 4348 | extern int unpoison_memory(unsigned long pfn); |
| 4349 | extern atomic_long_t num_poisoned_pages __read_mostly; |
| 4350 | extern int soft_offline_page(unsigned long pfn, int flags); |
| 4351 | #ifdef CONFIG_MEMORY_FAILURE |
| 4352 | /* |
| 4353 | * Sysfs entries for memory failure handling statistics. |
| 4354 | */ |
| 4355 | extern const struct attribute_group memory_failure_attr_group; |
| 4356 | extern void memory_failure_queue(unsigned long pfn, int flags); |
| 4357 | extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
| 4358 | bool *migratable_cleared); |
| 4359 | void num_poisoned_pages_inc(unsigned long pfn); |
| 4360 | void num_poisoned_pages_sub(unsigned long pfn, long i); |
| 4361 | #else |
| 4362 | static inline void memory_failure_queue(unsigned long pfn, int flags) |
| 4363 | { |
| 4364 | } |
| 4365 | |
| 4366 | static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
| 4367 | bool *migratable_cleared) |
| 4368 | { |
| 4369 | return 0; |
| 4370 | } |
| 4371 | |
| 4372 | static inline void num_poisoned_pages_inc(unsigned long pfn) |
| 4373 | { |
| 4374 | } |
| 4375 | |
| 4376 | static inline void num_poisoned_pages_sub(unsigned long pfn, long i) |
| 4377 | { |
| 4378 | } |
| 4379 | #endif |
| 4380 | |
| 4381 | #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) |
| 4382 | extern void memblk_nr_poison_inc(unsigned long pfn); |
| 4383 | extern void memblk_nr_poison_sub(unsigned long pfn, long i); |
| 4384 | #else |
| 4385 | static inline void memblk_nr_poison_inc(unsigned long pfn) |
| 4386 | { |
| 4387 | } |
| 4388 | |
| 4389 | static inline void memblk_nr_poison_sub(unsigned long pfn, long i) |
| 4390 | { |
| 4391 | } |
| 4392 | #endif |
| 4393 | |
| 4394 | #ifndef arch_memory_failure |
| 4395 | static inline int arch_memory_failure(unsigned long pfn, int flags) |
| 4396 | { |
| 4397 | return -ENXIO; |
| 4398 | } |
| 4399 | #endif |
| 4400 | |
| 4401 | #ifndef arch_is_platform_page |
| 4402 | static inline bool arch_is_platform_page(u64 paddr) |
| 4403 | { |
| 4404 | return false; |
| 4405 | } |
| 4406 | #endif |
| 4407 | |
| 4408 | /* |
| 4409 | * Error handlers for various types of pages. |
| 4410 | */ |
| 4411 | enum mf_result { |
| 4412 | MF_IGNORED, /* Error: cannot be handled */ |
| 4413 | MF_FAILED, /* Error: handling failed */ |
| 4414 | MF_DELAYED, /* Will be handled later */ |
| 4415 | MF_RECOVERED, /* Successfully recovered */ |
| 4416 | }; |
| 4417 | |
| 4418 | enum mf_action_page_type { |
| 4419 | MF_MSG_KERNEL, |
| 4420 | MF_MSG_KERNEL_HIGH_ORDER, |
| 4421 | MF_MSG_DIFFERENT_COMPOUND, |
| 4422 | MF_MSG_HUGE, |
| 4423 | MF_MSG_FREE_HUGE, |
| 4424 | MF_MSG_GET_HWPOISON, |
| 4425 | MF_MSG_UNMAP_FAILED, |
| 4426 | MF_MSG_DIRTY_SWAPCACHE, |
| 4427 | MF_MSG_CLEAN_SWAPCACHE, |
| 4428 | MF_MSG_DIRTY_MLOCKED_LRU, |
| 4429 | MF_MSG_CLEAN_MLOCKED_LRU, |
| 4430 | MF_MSG_DIRTY_UNEVICTABLE_LRU, |
| 4431 | MF_MSG_CLEAN_UNEVICTABLE_LRU, |
| 4432 | MF_MSG_DIRTY_LRU, |
| 4433 | MF_MSG_CLEAN_LRU, |
| 4434 | MF_MSG_TRUNCATED_LRU, |
| 4435 | MF_MSG_BUDDY, |
| 4436 | MF_MSG_DAX, |
| 4437 | MF_MSG_UNSPLIT_THP, |
| 4438 | MF_MSG_ALREADY_POISONED, |
| 4439 | MF_MSG_PFN_MAP, |
| 4440 | MF_MSG_UNKNOWN, |
| 4441 | }; |
| 4442 | |
| 4443 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
| 4444 | void folio_zero_user(struct folio *folio, unsigned long addr_hint); |
| 4445 | int copy_user_large_folio(struct folio *dst, struct folio *src, |
| 4446 | unsigned long addr_hint, |
| 4447 | struct vm_area_struct *vma); |
| 4448 | long copy_folio_from_user(struct folio *dst_folio, |
| 4449 | const void __user *usr_src, |
| 4450 | bool allow_pagefault); |
| 4451 | |
| 4452 | /** |
| 4453 | * vma_is_special_huge - Are transhuge page-table entries considered special? |
| 4454 | * @vma: Pointer to the struct vm_area_struct to consider |
| 4455 | * |
| 4456 | * Whether transhuge page-table entries are considered "special" following |
| 4457 | * the definition in vm_normal_page(). |
| 4458 | * |
| 4459 | * Return: true if transhuge page-table entries should be considered special, |
| 4460 | * false otherwise. |
| 4461 | */ |
| 4462 | static inline bool vma_is_special_huge(const struct vm_area_struct *vma) |
| 4463 | { |
| 4464 | return vma_is_dax(vma) || (vma->vm_file && |
| 4465 | (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); |
| 4466 | } |
| 4467 | |
| 4468 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
| 4469 | |
| 4470 | #if MAX_NUMNODES > 1 |
| 4471 | void __init setup_nr_node_ids(void); |
| 4472 | #else |
| 4473 | static inline void setup_nr_node_ids(void) {} |
| 4474 | #endif |
| 4475 | |
| 4476 | extern int memcmp_pages(struct page *page1, struct page *page2); |
| 4477 | |
| 4478 | static inline int pages_identical(struct page *page1, struct page *page2) |
| 4479 | { |
| 4480 | return !memcmp_pages(page1, page2); |
| 4481 | } |
| 4482 | |
| 4483 | #ifdef CONFIG_MAPPING_DIRTY_HELPERS |
| 4484 | unsigned long clean_record_shared_mapping_range(struct address_space *mapping, |
| 4485 | pgoff_t first_index, pgoff_t nr, |
| 4486 | pgoff_t bitmap_pgoff, |
| 4487 | unsigned long *bitmap, |
| 4488 | pgoff_t *start, |
| 4489 | pgoff_t *end); |
| 4490 | |
| 4491 | unsigned long wp_shared_mapping_range(struct address_space *mapping, |
| 4492 | pgoff_t first_index, pgoff_t nr); |
| 4493 | #endif |
| 4494 | |
| 4495 | #ifdef CONFIG_ANON_VMA_NAME |
| 4496 | int set_anon_vma_name(unsigned long addr, unsigned long size, |
| 4497 | const char __user *uname); |
| 4498 | #else |
| 4499 | static inline |
| 4500 | int set_anon_vma_name(unsigned long addr, unsigned long size, |
| 4501 | const char __user *uname) |
| 4502 | { |
| 4503 | return -EINVAL; |
| 4504 | } |
| 4505 | #endif |
| 4506 | |
| 4507 | #ifdef CONFIG_UNACCEPTED_MEMORY |
| 4508 | |
| 4509 | bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); |
| 4510 | void accept_memory(phys_addr_t start, unsigned long size); |
| 4511 | |
| 4512 | #else |
| 4513 | |
| 4514 | static inline bool range_contains_unaccepted_memory(phys_addr_t start, |
| 4515 | unsigned long size) |
| 4516 | { |
| 4517 | return false; |
| 4518 | } |
| 4519 | |
| 4520 | static inline void accept_memory(phys_addr_t start, unsigned long size) |
| 4521 | { |
| 4522 | } |
| 4523 | |
| 4524 | #endif |
| 4525 | |
| 4526 | static inline bool pfn_is_unaccepted_memory(unsigned long pfn) |
| 4527 | { |
| 4528 | return range_contains_unaccepted_memory(start: pfn << PAGE_SHIFT, PAGE_SIZE); |
| 4529 | } |
| 4530 | |
| 4531 | void vma_pgtable_walk_begin(struct vm_area_struct *vma); |
| 4532 | void vma_pgtable_walk_end(struct vm_area_struct *vma); |
| 4533 | |
| 4534 | int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); |
| 4535 | int reserve_mem_release_by_name(const char *name); |
| 4536 | |
| 4537 | #ifdef CONFIG_64BIT |
| 4538 | int do_mseal(unsigned long start, size_t len_in, unsigned long flags); |
| 4539 | #else |
| 4540 | static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) |
| 4541 | { |
| 4542 | /* noop on 32 bit */ |
| 4543 | return 0; |
| 4544 | } |
| 4545 | #endif |
| 4546 | |
| 4547 | /* |
| 4548 | * user_alloc_needs_zeroing checks if a user folio from page allocator needs to |
| 4549 | * be zeroed or not. |
| 4550 | */ |
| 4551 | static inline bool user_alloc_needs_zeroing(void) |
| 4552 | { |
| 4553 | /* |
| 4554 | * for user folios, arch with cache aliasing requires cache flush and |
| 4555 | * arc changes folio->flags to make icache coherent with dcache, so |
| 4556 | * always return false to make caller use |
| 4557 | * clear_user_page()/clear_user_highpage(). |
| 4558 | */ |
| 4559 | return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || |
| 4560 | !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| 4561 | &init_on_alloc); |
| 4562 | } |
| 4563 | |
| 4564 | int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); |
| 4565 | int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); |
| 4566 | int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); |
| 4567 | |
| 4568 | /* |
| 4569 | * DMA mapping IDs for page_pool |
| 4570 | * |
| 4571 | * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and |
| 4572 | * stashes it in the upper bits of page->pp_magic. We always want to be able to |
| 4573 | * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP |
| 4574 | * pages can have arbitrary kernel pointers stored in the same field as pp_magic |
| 4575 | * (since it overlaps with page->lru.next), so we must ensure that we cannot |
| 4576 | * mistake a valid kernel pointer with any of the values we write into this |
| 4577 | * field. |
| 4578 | * |
| 4579 | * On architectures that set POISON_POINTER_DELTA, this is already ensured, |
| 4580 | * since this value becomes part of PP_SIGNATURE; meaning we can just use the |
| 4581 | * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the |
| 4582 | * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is |
| 4583 | * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is |
| 4584 | * known at compile-time. |
| 4585 | * |
| 4586 | * If the value of PAGE_OFFSET is not known at compile time, or if it is too |
| 4587 | * small to leave at least 8 bits available above PP_SIGNATURE, we define the |
| 4588 | * number of bits to be 0, which turns off the DMA index tracking altogether |
| 4589 | * (see page_pool_register_dma_index()). |
| 4590 | */ |
| 4591 | #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) |
| 4592 | #if POISON_POINTER_DELTA > 0 |
| 4593 | /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA |
| 4594 | * index to not overlap with that if set |
| 4595 | */ |
| 4596 | #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) |
| 4597 | #else |
| 4598 | /* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */ |
| 4599 | #define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8)) |
| 4600 | #define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \ |
| 4601 | PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \ |
| 4602 | !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \ |
| 4603 | MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0) |
| 4604 | |
| 4605 | #endif |
| 4606 | |
| 4607 | #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ |
| 4608 | PP_DMA_INDEX_SHIFT) |
| 4609 | |
| 4610 | /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is |
| 4611 | * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for |
| 4612 | * the head page of compound page and bit 1 for pfmemalloc page, as well as the |
| 4613 | * bits used for the DMA index. page_is_pfmemalloc() is checked in |
| 4614 | * __page_pool_put_page() to avoid recycling the pfmemalloc page. |
| 4615 | */ |
| 4616 | #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) |
| 4617 | |
| 4618 | #ifdef CONFIG_PAGE_POOL |
| 4619 | static inline bool page_pool_page_is_pp(const struct page *page) |
| 4620 | { |
| 4621 | return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; |
| 4622 | } |
| 4623 | #else |
| 4624 | static inline bool page_pool_page_is_pp(const struct page *page) |
| 4625 | { |
| 4626 | return false; |
| 4627 | } |
| 4628 | #endif |
| 4629 | |
| 4630 | #define PAGE_SNAPSHOT_FAITHFUL (1 << 0) |
| 4631 | #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1) |
| 4632 | #define PAGE_SNAPSHOT_PG_IDLE (1 << 2) |
| 4633 | |
| 4634 | struct page_snapshot { |
| 4635 | struct folio folio_snapshot; |
| 4636 | struct page page_snapshot; |
| 4637 | unsigned long pfn; |
| 4638 | unsigned long idx; |
| 4639 | unsigned long flags; |
| 4640 | }; |
| 4641 | |
| 4642 | static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps) |
| 4643 | { |
| 4644 | return ps->flags & PAGE_SNAPSHOT_FAITHFUL; |
| 4645 | } |
| 4646 | |
| 4647 | void snapshot_page(struct page_snapshot *ps, const struct page *page); |
| 4648 | |
| 4649 | #endif /* _LINUX_MM_H */ |
| 4650 | |