| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* LRW: as defined by Cyril Guyot in |
| 3 | * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf |
| 4 | * |
| 5 | * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> |
| 6 | * |
| 7 | * Based on ecb.c |
| 8 | * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> |
| 9 | */ |
| 10 | /* This implementation is checked against the test vectors in the above |
| 11 | * document and by a test vector provided by Ken Buchanan at |
| 12 | * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html |
| 13 | * |
| 14 | * The test vectors are included in the testing module tcrypt.[ch] */ |
| 15 | |
| 16 | #include <crypto/internal/skcipher.h> |
| 17 | #include <crypto/scatterwalk.h> |
| 18 | #include <linux/err.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/scatterlist.h> |
| 23 | #include <linux/slab.h> |
| 24 | |
| 25 | #include <crypto/b128ops.h> |
| 26 | #include <crypto/gf128mul.h> |
| 27 | |
| 28 | #define LRW_BLOCK_SIZE 16 |
| 29 | |
| 30 | struct lrw_tfm_ctx { |
| 31 | struct crypto_skcipher *child; |
| 32 | |
| 33 | /* |
| 34 | * optimizes multiplying a random (non incrementing, as at the |
| 35 | * start of a new sector) value with key2, we could also have |
| 36 | * used 4k optimization tables or no optimization at all. In the |
| 37 | * latter case we would have to store key2 here |
| 38 | */ |
| 39 | struct gf128mul_64k *table; |
| 40 | |
| 41 | /* |
| 42 | * stores: |
| 43 | * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, |
| 44 | * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } |
| 45 | * key2*{ 0,0,...1,1,1,1,1 }, etc |
| 46 | * needed for optimized multiplication of incrementing values |
| 47 | * with key2 |
| 48 | */ |
| 49 | be128 mulinc[128]; |
| 50 | }; |
| 51 | |
| 52 | struct lrw_request_ctx { |
| 53 | be128 t; |
| 54 | struct skcipher_request subreq; |
| 55 | }; |
| 56 | |
| 57 | static inline void lrw_setbit128_bbe(void *b, int bit) |
| 58 | { |
| 59 | __set_bit(bit ^ (0x80 - |
| 60 | #ifdef __BIG_ENDIAN |
| 61 | BITS_PER_LONG |
| 62 | #else |
| 63 | BITS_PER_BYTE |
| 64 | #endif |
| 65 | ), b); |
| 66 | } |
| 67 | |
| 68 | static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key, |
| 69 | unsigned int keylen) |
| 70 | { |
| 71 | struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm: parent); |
| 72 | struct crypto_skcipher *child = ctx->child; |
| 73 | int err, bsize = LRW_BLOCK_SIZE; |
| 74 | const u8 *tweak = key + keylen - bsize; |
| 75 | be128 tmp = { 0 }; |
| 76 | int i; |
| 77 | |
| 78 | crypto_skcipher_clear_flags(tfm: child, CRYPTO_TFM_REQ_MASK); |
| 79 | crypto_skcipher_set_flags(tfm: child, flags: crypto_skcipher_get_flags(tfm: parent) & |
| 80 | CRYPTO_TFM_REQ_MASK); |
| 81 | err = crypto_skcipher_setkey(tfm: child, key, keylen: keylen - bsize); |
| 82 | if (err) |
| 83 | return err; |
| 84 | |
| 85 | if (ctx->table) |
| 86 | gf128mul_free_64k(t: ctx->table); |
| 87 | |
| 88 | /* initialize multiplication table for Key2 */ |
| 89 | ctx->table = gf128mul_init_64k_bbe(g: (be128 *)tweak); |
| 90 | if (!ctx->table) |
| 91 | return -ENOMEM; |
| 92 | |
| 93 | /* initialize optimization table */ |
| 94 | for (i = 0; i < 128; i++) { |
| 95 | lrw_setbit128_bbe(b: &tmp, bit: i); |
| 96 | ctx->mulinc[i] = tmp; |
| 97 | gf128mul_64k_bbe(a: &ctx->mulinc[i], t: ctx->table); |
| 98 | } |
| 99 | |
| 100 | return 0; |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * Returns the number of trailing '1' bits in the words of the counter, which is |
| 105 | * represented by 4 32-bit words, arranged from least to most significant. |
| 106 | * At the same time, increments the counter by one. |
| 107 | * |
| 108 | * For example: |
| 109 | * |
| 110 | * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 }; |
| 111 | * int i = lrw_next_index(&counter); |
| 112 | * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 } |
| 113 | */ |
| 114 | static int lrw_next_index(u32 *counter) |
| 115 | { |
| 116 | int i, res = 0; |
| 117 | |
| 118 | for (i = 0; i < 4; i++) { |
| 119 | if (counter[i] + 1 != 0) |
| 120 | return res + ffz(counter[i]++); |
| 121 | |
| 122 | counter[i] = 0; |
| 123 | res += 32; |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * If we get here, then x == 128 and we are incrementing the counter |
| 128 | * from all ones to all zeros. This means we must return index 127, i.e. |
| 129 | * the one corresponding to key2*{ 1,...,1 }. |
| 130 | */ |
| 131 | return 127; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * We compute the tweak masks twice (both before and after the ECB encryption or |
| 136 | * decryption) to avoid having to allocate a temporary buffer and/or make |
| 137 | * mutliple calls to the 'ecb(..)' instance, which usually would be slower than |
| 138 | * just doing the lrw_next_index() calls again. |
| 139 | */ |
| 140 | static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass) |
| 141 | { |
| 142 | const int bs = LRW_BLOCK_SIZE; |
| 143 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 144 | const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| 145 | struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| 146 | be128 t = rctx->t; |
| 147 | struct skcipher_walk w; |
| 148 | __be32 *iv; |
| 149 | u32 counter[4]; |
| 150 | int err; |
| 151 | |
| 152 | if (second_pass) { |
| 153 | req = &rctx->subreq; |
| 154 | /* set to our TFM to enforce correct alignment: */ |
| 155 | skcipher_request_set_tfm(req, tfm); |
| 156 | } |
| 157 | |
| 158 | err = skcipher_walk_virt(walk: &w, req, atomic: false); |
| 159 | if (err) |
| 160 | return err; |
| 161 | |
| 162 | iv = (__be32 *)w.iv; |
| 163 | counter[0] = be32_to_cpu(iv[3]); |
| 164 | counter[1] = be32_to_cpu(iv[2]); |
| 165 | counter[2] = be32_to_cpu(iv[1]); |
| 166 | counter[3] = be32_to_cpu(iv[0]); |
| 167 | |
| 168 | while (w.nbytes) { |
| 169 | unsigned int avail = w.nbytes; |
| 170 | const be128 *wsrc; |
| 171 | be128 *wdst; |
| 172 | |
| 173 | wsrc = w.src.virt.addr; |
| 174 | wdst = w.dst.virt.addr; |
| 175 | |
| 176 | do { |
| 177 | be128_xor(r: wdst++, p: &t, q: wsrc++); |
| 178 | |
| 179 | /* T <- I*Key2, using the optimization |
| 180 | * discussed in the specification */ |
| 181 | be128_xor(r: &t, p: &t, |
| 182 | q: &ctx->mulinc[lrw_next_index(counter)]); |
| 183 | } while ((avail -= bs) >= bs); |
| 184 | |
| 185 | if (second_pass && w.nbytes == w.total) { |
| 186 | iv[0] = cpu_to_be32(counter[3]); |
| 187 | iv[1] = cpu_to_be32(counter[2]); |
| 188 | iv[2] = cpu_to_be32(counter[1]); |
| 189 | iv[3] = cpu_to_be32(counter[0]); |
| 190 | } |
| 191 | |
| 192 | err = skcipher_walk_done(walk: &w, res: avail); |
| 193 | } |
| 194 | |
| 195 | return err; |
| 196 | } |
| 197 | |
| 198 | static int lrw_xor_tweak_pre(struct skcipher_request *req) |
| 199 | { |
| 200 | return lrw_xor_tweak(req, second_pass: false); |
| 201 | } |
| 202 | |
| 203 | static int lrw_xor_tweak_post(struct skcipher_request *req) |
| 204 | { |
| 205 | return lrw_xor_tweak(req, second_pass: true); |
| 206 | } |
| 207 | |
| 208 | static void lrw_crypt_done(void *data, int err) |
| 209 | { |
| 210 | struct skcipher_request *req = data; |
| 211 | |
| 212 | if (!err) { |
| 213 | struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| 214 | |
| 215 | rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; |
| 216 | err = lrw_xor_tweak_post(req); |
| 217 | } |
| 218 | |
| 219 | skcipher_request_complete(req, err); |
| 220 | } |
| 221 | |
| 222 | static void lrw_init_crypt(struct skcipher_request *req) |
| 223 | { |
| 224 | const struct lrw_tfm_ctx *ctx = |
| 225 | crypto_skcipher_ctx(tfm: crypto_skcipher_reqtfm(req)); |
| 226 | struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| 227 | struct skcipher_request *subreq = &rctx->subreq; |
| 228 | |
| 229 | skcipher_request_set_tfm(req: subreq, tfm: ctx->child); |
| 230 | skcipher_request_set_callback(req: subreq, flags: req->base.flags, compl: lrw_crypt_done, |
| 231 | data: req); |
| 232 | /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */ |
| 233 | skcipher_request_set_crypt(req: subreq, src: req->dst, dst: req->dst, |
| 234 | cryptlen: req->cryptlen, iv: req->iv); |
| 235 | |
| 236 | /* calculate first value of T */ |
| 237 | memcpy(&rctx->t, req->iv, sizeof(rctx->t)); |
| 238 | |
| 239 | /* T <- I*Key2 */ |
| 240 | gf128mul_64k_bbe(a: &rctx->t, t: ctx->table); |
| 241 | } |
| 242 | |
| 243 | static int lrw_encrypt(struct skcipher_request *req) |
| 244 | { |
| 245 | struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| 246 | struct skcipher_request *subreq = &rctx->subreq; |
| 247 | |
| 248 | lrw_init_crypt(req); |
| 249 | return lrw_xor_tweak_pre(req) ?: |
| 250 | crypto_skcipher_encrypt(req: subreq) ?: |
| 251 | lrw_xor_tweak_post(req); |
| 252 | } |
| 253 | |
| 254 | static int lrw_decrypt(struct skcipher_request *req) |
| 255 | { |
| 256 | struct lrw_request_ctx *rctx = skcipher_request_ctx(req); |
| 257 | struct skcipher_request *subreq = &rctx->subreq; |
| 258 | |
| 259 | lrw_init_crypt(req); |
| 260 | return lrw_xor_tweak_pre(req) ?: |
| 261 | crypto_skcipher_decrypt(req: subreq) ?: |
| 262 | lrw_xor_tweak_post(req); |
| 263 | } |
| 264 | |
| 265 | static int lrw_init_tfm(struct crypto_skcipher *tfm) |
| 266 | { |
| 267 | struct skcipher_instance *inst = skcipher_alg_instance(skcipher: tfm); |
| 268 | struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst); |
| 269 | struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| 270 | struct crypto_skcipher *cipher; |
| 271 | |
| 272 | cipher = crypto_spawn_skcipher(spawn); |
| 273 | if (IS_ERR(ptr: cipher)) |
| 274 | return PTR_ERR(ptr: cipher); |
| 275 | |
| 276 | ctx->child = cipher; |
| 277 | |
| 278 | crypto_skcipher_set_reqsize(skcipher: tfm, reqsize: crypto_skcipher_reqsize(tfm: cipher) + |
| 279 | sizeof(struct lrw_request_ctx)); |
| 280 | |
| 281 | return 0; |
| 282 | } |
| 283 | |
| 284 | static void lrw_exit_tfm(struct crypto_skcipher *tfm) |
| 285 | { |
| 286 | struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); |
| 287 | |
| 288 | if (ctx->table) |
| 289 | gf128mul_free_64k(t: ctx->table); |
| 290 | crypto_free_skcipher(tfm: ctx->child); |
| 291 | } |
| 292 | |
| 293 | static void lrw_free_instance(struct skcipher_instance *inst) |
| 294 | { |
| 295 | crypto_drop_skcipher(spawn: skcipher_instance_ctx(inst)); |
| 296 | kfree(objp: inst); |
| 297 | } |
| 298 | |
| 299 | static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb) |
| 300 | { |
| 301 | struct crypto_skcipher_spawn *spawn; |
| 302 | struct skcipher_alg_common *alg; |
| 303 | struct skcipher_instance *inst; |
| 304 | const char *cipher_name; |
| 305 | char ecb_name[CRYPTO_MAX_ALG_NAME]; |
| 306 | u32 mask; |
| 307 | int err; |
| 308 | |
| 309 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, mask_ret: &mask); |
| 310 | if (err) |
| 311 | return err; |
| 312 | |
| 313 | cipher_name = crypto_attr_alg_name(rta: tb[1]); |
| 314 | if (IS_ERR(ptr: cipher_name)) |
| 315 | return PTR_ERR(ptr: cipher_name); |
| 316 | |
| 317 | inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); |
| 318 | if (!inst) |
| 319 | return -ENOMEM; |
| 320 | |
| 321 | spawn = skcipher_instance_ctx(inst); |
| 322 | |
| 323 | err = crypto_grab_skcipher(spawn, inst: skcipher_crypto_instance(inst), |
| 324 | name: cipher_name, type: 0, mask); |
| 325 | if (err == -ENOENT && memcmp(p: cipher_name, q: "ecb(" , size: 4)) { |
| 326 | err = -ENAMETOOLONG; |
| 327 | if (snprintf(buf: ecb_name, CRYPTO_MAX_ALG_NAME, fmt: "ecb(%s)" , |
| 328 | cipher_name) >= CRYPTO_MAX_ALG_NAME) |
| 329 | goto err_free_inst; |
| 330 | |
| 331 | err = crypto_grab_skcipher(spawn, |
| 332 | inst: skcipher_crypto_instance(inst), |
| 333 | name: ecb_name, type: 0, mask); |
| 334 | } |
| 335 | |
| 336 | if (err) |
| 337 | goto err_free_inst; |
| 338 | |
| 339 | alg = crypto_spawn_skcipher_alg_common(spawn); |
| 340 | |
| 341 | err = -EINVAL; |
| 342 | if (alg->base.cra_blocksize != LRW_BLOCK_SIZE) |
| 343 | goto err_free_inst; |
| 344 | |
| 345 | if (alg->ivsize) |
| 346 | goto err_free_inst; |
| 347 | |
| 348 | err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw" , |
| 349 | &alg->base); |
| 350 | if (err) |
| 351 | goto err_free_inst; |
| 352 | |
| 353 | err = -EINVAL; |
| 354 | cipher_name = alg->base.cra_name; |
| 355 | |
| 356 | /* Alas we screwed up the naming so we have to mangle the |
| 357 | * cipher name. |
| 358 | */ |
| 359 | if (!memcmp(p: cipher_name, q: "ecb(" , size: 4)) { |
| 360 | int len; |
| 361 | |
| 362 | len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name)); |
| 363 | if (len < 2) |
| 364 | goto err_free_inst; |
| 365 | |
| 366 | if (ecb_name[len - 1] != ')') |
| 367 | goto err_free_inst; |
| 368 | |
| 369 | ecb_name[len - 1] = 0; |
| 370 | |
| 371 | if (snprintf(buf: inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, |
| 372 | fmt: "lrw(%s)" , ecb_name) >= CRYPTO_MAX_ALG_NAME) { |
| 373 | err = -ENAMETOOLONG; |
| 374 | goto err_free_inst; |
| 375 | } |
| 376 | } else |
| 377 | goto err_free_inst; |
| 378 | |
| 379 | inst->alg.base.cra_priority = alg->base.cra_priority; |
| 380 | inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE; |
| 381 | inst->alg.base.cra_alignmask = alg->base.cra_alignmask | |
| 382 | (__alignof__(be128) - 1); |
| 383 | |
| 384 | inst->alg.ivsize = LRW_BLOCK_SIZE; |
| 385 | inst->alg.min_keysize = alg->min_keysize + LRW_BLOCK_SIZE; |
| 386 | inst->alg.max_keysize = alg->max_keysize + LRW_BLOCK_SIZE; |
| 387 | |
| 388 | inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx); |
| 389 | |
| 390 | inst->alg.init = lrw_init_tfm; |
| 391 | inst->alg.exit = lrw_exit_tfm; |
| 392 | |
| 393 | inst->alg.setkey = lrw_setkey; |
| 394 | inst->alg.encrypt = lrw_encrypt; |
| 395 | inst->alg.decrypt = lrw_decrypt; |
| 396 | |
| 397 | inst->free = lrw_free_instance; |
| 398 | |
| 399 | err = skcipher_register_instance(tmpl, inst); |
| 400 | if (err) { |
| 401 | err_free_inst: |
| 402 | lrw_free_instance(inst); |
| 403 | } |
| 404 | return err; |
| 405 | } |
| 406 | |
| 407 | static struct crypto_template lrw_tmpl = { |
| 408 | .name = "lrw" , |
| 409 | .create = lrw_create, |
| 410 | .module = THIS_MODULE, |
| 411 | }; |
| 412 | |
| 413 | static int __init lrw_module_init(void) |
| 414 | { |
| 415 | return crypto_register_template(tmpl: &lrw_tmpl); |
| 416 | } |
| 417 | |
| 418 | static void __exit lrw_module_exit(void) |
| 419 | { |
| 420 | crypto_unregister_template(tmpl: &lrw_tmpl); |
| 421 | } |
| 422 | |
| 423 | module_init(lrw_module_init); |
| 424 | module_exit(lrw_module_exit); |
| 425 | |
| 426 | MODULE_LICENSE("GPL" ); |
| 427 | MODULE_DESCRIPTION("LRW block cipher mode" ); |
| 428 | MODULE_ALIAS_CRYPTO("lrw" ); |
| 429 | MODULE_SOFTDEP("pre: ecb" ); |
| 430 | |