[go: up one dir, main page]

Czech J. Food Sci., 2024, 42(3):192-206 | DOI: 10.17221/39/2024-CJFS

Harnessing nature's secrets: Silver nanoparticles from Withania coagulans fruit and root extracts unveil exceptional antioxidant and antimicrobial propertiesOriginal Paper

Farwa Iftikhar1, Rahmatullah Qureshi1, Ayesha Siddiqa1, Khursid Anwar1, Fizza Arshad1, Zia-ur-Rehman Mashwani1, Aayesha Riaz2, Safir Ullah Khan3, Amir Ali1, Shahzad Iqbal4, Ajaz Ahmad5, Melissa Danae Bejarano Gómez6
1 Department of Botany, Phir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
2 Department of Parasitology and Microbiology, Phir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
3 Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
4 Faculty of Applied Energy System, Jeju National University, Jeju, South Korea
5 Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
6 National School of Medicine and Homeopathy (ENMyH), National Polytechnic Institute, Mexico City, Mexico

Nanotechnology, an emerging field, holds significant promise with applications across diverse sectors, including medicine, agriculture, and the biological sciences. To address environmental concerns, the green biosynthesis of silver nanoparticles (AgNPs) using plant extracts is favoured. This study focuses on the formulation and characterisation of AgNPs using extracts from Withania coagulans (Stocks) Dunal, a medicinal plant that holds a unique phytochemical profile. The AgNPs derived from W. coagulans root (WcAgNPR) and fruit (WcAgNPF) extracts were characterised using ultraviolet and visible light (UV-Vis) spectral analysis, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The findings reveal that both WcAgNPR and WcAgNPF exhibit substantial antioxidant potential, with robust iron reducing capabilities and potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity. Additionally, they demonstrate strong hydrogen peroxide scavenging abilities. Notably, WcAgNPR outperforms WcAgNPF in the phosphomolybdate assay for antioxidant potential. Both AgNPs display remarkable antimicrobial efficacy, with minimal inhibitory concentrations (MIC) below 10 µg·mL–1 against gram-positive bacteria (Staphylococcus aureus) and noteworthy activity against gram-negative Escherichia coli (WcAgNPF with a MIC of 30 µg·mL–1 and WcAgNPR with a MIC of 60 µg·mL–1). These findings highlight the silver nanoparticles' significant antioxidant and antimicrobial potential, suggesting their potential for in vivo use as antimicrobial agents with minimal oxidative damage.

Keywords: W. coagulans; nanotechnology; antibacterial; antioxidative

Received: March 1, 2024; Revised: May 15, 2024; Accepted: May 24, 2024; Prepublished online: June 18, 2024; Published: June 27, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Iftikhar F, Qureshi R, Siddiqa A, Anwar K, Arshad F, Mashwani Z, et al.. Harnessing nature's secrets: Silver nanoparticles from Withania coagulans fruit and root extracts unveil exceptional antioxidant and antimicrobial properties. Czech J. Food Sci.. 2024;42(3):192-206. doi: 10.17221/39/2024-CJFS.
Download citation

References

  1. Ahn E.-Y., Jin H., Park Y. (2019): Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering: C, 101: 204-216. Go to original source... Go to PubMed...
  2. Ahsan A., Farooq M.A., Ahsan Bajwa A., Parveen A. (2020): Green synthesis of silver nanoparticles using Parthenium hysterophorus: Optimization, characterization and in vitro therapeutic evaluation. Molecules, 25: 3324. Go to original source... Go to PubMed...
  3. Alharbi N.S., Alsubhi N.S., Felimban A.I. (2022): Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15: 109-124. Go to original source...
  4. Anwar A., Masri A., Rao K., Rajendran K., Khan N.A., Shah M.R., Siddiqui R. (2019): Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Scientific Reports, 9: 1-12. Go to original source... Go to PubMed...
  5. Azhar M.F., Naseer U., Aziz A., Zafar S., Qadir I., Farooq M., Ahmad I., Anjum K. (2020): Antioxidant and phytochemical composition of leaves, stem and root extracts of Withania coagulans and Withania somnifera. Zeitschrift Arznei-Gewurzpflanzen, 25: 27-30.
  6. Baker S., Volova T., Prudnikova S.V., Satish S., Prasad N. (2017): Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environmental Toxicology and Pharmacology, 53: 10-17. Go to original source... Go to PubMed...
  7. Benzie I.F., Strain J.J. (1996): The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay. Analytical Biochemistry, 239: 70-76. Go to original source... Go to PubMed...
  8. Gaurav H., Yadav D., Maurya A., Yadav H., Yadav R., Shukla A.C., Sharma M., Gupta V.K., Palazon J. (2023): Biodiversity, biochemical profiling, and pharmaco-commercial applications of Withania somnifera: A Review. Molecules, 28: 1208. Go to original source... Go to PubMed...
  9. Geremew A., Gonzalles J. 3rd, Peace E., Woldesenbet S., Reeves S., Brooks N. Jr., Carson L. (2024): Green synthesis of novel silver nanoparticles using Salvia blepharophylla and Salvia greggii: Antioxidant and antidiabetic potential and effect on foodborne bacterial pathogens. International Journal of Molecular Sciences, 25: 904. Go to original source... Go to PubMed...
  10. Han X., Xu K., Taratula O., Farsad K. (2019): Applications of nanoparticles in biomedical imaging. Nanoscale, 11: 799-819. Go to original source... Go to PubMed...
  11. Hasan M., Zafar A., Shahzadi I., Luo F., Hassan S.G., Tariq T., Zehra S., Munawar T., Iqbal F., Shu X. (2020): Fractionation of biomolecules in Withania coagulans extract for bioreductive nanoparticle synthesis, antifungal and biofilm activity. Molecules, 25: 3478. Go to original source... Go to PubMed...
  12. Jemal K., Sandeep B., Pola S. (2017): Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. Journal of Nanomaterials, 2017: 1-11. Go to original source...
  13. Keshari A.K., Srivastava R., Singh P., Yadav V.B., Nath G. (2020): Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 11: 37-44. Go to original source... Go to PubMed...
  14. Khan R.A., Khan M.R., Sahreen S., Ahmed M. (2012): Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chemistry Central Journal, 6: 43. Go to original source... Go to PubMed...
  15. Khan I., Saeed K., Khan I. (2019): Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12: 908-931. Go to original source...
  16. Khan M.I., Maqsood M., Saeed R.A., Alam A., Sahar A., Kieliszek M., Miecznikowski A., Muzammil H.S., Aadil R.M. (2021): Phytochemistry, food application, and therapeutic potential of the medicinal plant (Withania coagulans): A review. Molecules, 26: 6881. Go to original source... Go to PubMed...
  17. Khodaei M., Jafari M., Noori M. (2012): Remedial use of withanolides from Withania coagolans (Stocks) Dunal. Advancements in Life Sciences, 2: 6-19. Go to original source...
  18. Khoshnamvand M., Huo C., Liu J. (2019): Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: Characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. Journal of Molecular Structure, 1175: 90-96. Go to original source...
  19. Madhusudhan D., Agsar D., Sulochana M. (2015): Water soluble melanin of Streptomyces lusitanus DMZ3 persuade synthesis of enhanced bio-medically active silver nanoparticles. Journal of Cluster Science, 26: 1077-1089. Go to original source...
  20. Manzano M., Vallet-Regí M. (2020): Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 30: 1902634. Go to original source...
  21. McNamara K., Tofail S.A. (2017): Nanoparticles in biomedical applications. Advances in Physics: X, 2: 54-88. Go to original source...
  22. Mirjalili M.H., Moyano E., Bonfill M., Cusido R.M., Palazon J. (2009): Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14: 2373-2393. Go to original source... Go to PubMed...
  23. Moonmun D., Majumder R., Lopamudra A. (2017): Quantitative phytochemical estimation and evaluation of antioxidant and antibacterial activity of methanol and ethanol extracts of Heliconia rostrata. Indian Journal of Pharmaceutical Sciences, 79: 79-90. Go to original source...
  24. Mousavi S.M., Hashemi S.A., Ghasemi Y., Atapour A., Amani A.M., Savar Dashtaki A., Babapoor A., Arjmand O. (2018): Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artificial Cells, Nanomedicine, and Biotechnology, 46: S855-S872. Go to original source... Go to PubMed...
  25. Noreen H., Zaman B., Rahman U.A., Hassan W. (2016): Antioxidant and antimicrobial efficacies of Withania coagulans seed extract against pathogenic bacteria and fungi. The International Journal of Biotechnology, 5: 45-51. Go to original source...
  26. Peerzade N., Sayed N., Das N. (2018): Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the antidiabetic activity. Pharma Innovation Journal, 7: 197-204.
  27. Rai M., Yadav A., Gade A. (2009): Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27: 76-83. Go to original source... Go to PubMed...
  28. Rajoka M.S.R., Mehwish H.M., Zhang H., Ashraf M., Fang H., Zeng X., Wu Y., Khurshid M., Zhao L., He Z. (2020): Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186: 110734. Go to original source... Go to PubMed...
  29. Rambaran T., Schirhagl R. (2022): Nanotechnology from lab to industry - A look at current trends. Nanoscale Advances, 4: 3664-3675. Go to original source... Go to PubMed...
  30. Rudtanatip T., Pariwatthanakun C., Somintara S., Sakaew W., Wongprasert K. (2022): Structural characterization, antioxidant activity, and protective effect against hydrogen peroxide-induced oxidative stress of chemically degraded Gracilaria fisheri sulfated galactans. International Journal of Biological Macromolecules, 206: 51-63. Go to original source... Go to PubMed...
  31. Shahid W., Durrani R., Iram S., Durrani M., Khan F.A. (2013): Antibacterial activity in vitro of medicinal plants. Sky Journal of Microbiology Research, 1: 5-21.
  32. Shukla K., Dikshit P., Shukla R., Gambhir J.K. (2012): The aqueous extract of Withania coagulans fruit partially reverses nicotinamide/streptozotocin-induced diabetes mellitus in rats. Journal of Medicinal Food, 15: 718-725. Go to original source... Go to PubMed...
  33. Talib H., Mehmood A., Amjad M.S., Mustafa A., Khan M.A.R., Raffi M., Khan R.T., Ahmad K.S., Qureshi H. (2024): Antibacterial, antioxidant, and anticancer potential of green fabricated silver nanoparticles made from Viburnum grandiflorum leaf extract. Botanical Studies, 65: 4. Go to original source... Go to PubMed...
  34. Tripathi D., Modi A., Narayan G., Rai S.P. (2019): Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Materials Science and Engineering: C, 100: 152-164. Go to original source... Go to PubMed...
  35. Zhang H., Samadi A.K., Cohen M.S., Timmermann B.N. (2012): Anti-proliferative withanolides from the Solanaceae: A structure-activity study. Pure and Applied Chemistry, 84: 1353-1367. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.