Skip to main content
The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of... more
The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might...
We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81 % at postnatal (PN) 22-25 days and 1.68 and... more
We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81 % at postnatal (PN) 22-25 days and 1.68 and 0.65 % at PN 31-34 days for wildtype (WT) and CI-deficient KO, respectively). A more severe respiratory depression was caused by 1.0 MAC isoflurane in KO mice (respiratory rate values of 86 and 45 at PN 22-25 days and 69 and 29 at PN 31-34 days for anesthetized WT and KO, respectively). Here, we address the idea that isoflurane anesthesia causes a much larger decrease in brain mitochondrial ATP production in KO mice thus explaining their increased sensitivity to this anesthetic. Brains from WT and KO mice of the above study were removed immediately after MAC determination at PN 31-34 days and a mitochondria-enriched fraction was prepared. Aliquots were used for measurement of maximal ATP production in the presence of pyruvate, malate, ADP and creatine...
Mitochondrial ATP production is mediated by the oxidative phosphorylation (OXPHOS) system, which consists of four multi-subunit complexes (CI-CIV) and the FoF1-ATP synthase (CV). Mitochondrial disorders including Leigh Syndrome often... more
Mitochondrial ATP production is mediated by the oxidative phosphorylation (OXPHOS) system, which consists of four multi-subunit complexes (CI-CIV) and the FoF1-ATP synthase (CV). Mitochondrial disorders including Leigh Syndrome often involve CI dysfunction, the pathophysiological consequences of which still remain incompletely understood. Here we combined experimental and computational strategies to gain mechanistic insight into the energy metabolism of isolated skeletal muscle mitochondria from 5-week-old wild-type (WT) and CI-deficient NDUFS4(-/-) (KO) mice. Enzyme activity measurements in KO mitochondria revealed a reduction of 79% in maximal CI activity (Vmax), which was paralleled by 45-72% increase in Vmax of CII, CIII, CIV and citrate synthase. Mathematical modeling of mitochondrial metabolism predicted that these Vmax changes do not affect the maximal rates of pyruvate (PYR) oxidation and ATP production in KO mitochondria. This prediction was empirically confirmed by flux measurements. In silico analysis further predicted that CI deficiency altered the concentration of intermediate metabolites, modestly increased mitochondrial NADH/NAD(+) ratio and stimulated the lower half of the TCA cycle, including CII. Several of the predicted changes were previously observed in experimental models of CI-deficiency. Interestingly, model predictions further suggested that CI deficiency only has major metabolic consequences when its activity decreases below 90% of normal levels, compatible with a biochemical threshold effect. Taken together, our results suggest that mouse skeletal muscle mitochondria possess a substantial CI overcapacity, which minimizes the effects of CI dysfunction on mitochondrial metabolism in this otherwise early fatal mouse model.
The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an... more
The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and pr...
Children with mitochondrial disorders are frequently anesthetized for a wide range of operations. These disorders may interfere with the response to surgery and anesthesia. We examined anesthetic sensitivity to and respiratory effects of... more
Children with mitochondrial disorders are frequently anesthetized for a wide range of operations. These disorders may interfere with the response to surgery and anesthesia. We examined anesthetic sensitivity to and respiratory effects of isoflurane in the Ndufs4 knockout (KO) mouse model. These mice exhibit an isolated mitochondrial complex I (CI) deficiency of the respiratory chain, and they also display clinical signs and symptoms resembling those of patients with mitochondrial CI disease. We investigated seven Ndufs4(-/-) knockout (KO), five Ndufs4(+/-) heterozygous (HZ) and five Ndufs4(+/+) wild type (WT) mice between 22 and 25 days and again between 31 and 34 days post-natal. Animals were placed inside an airtight box, breathing spontaneously while isoflurane was administered in increasing concentrations. Minimum alveolar concentration (MAC) was determined with the bracketing study design, using the response to electrical stimulation to the hind paw. MAC for isoflurane was significantly lower in KO mice than in HZ and WT mice: 0.81 % ± 0.01 vs 1.55 ± 0.05 % and 1.55 ± 0.13 %, respectively, at 22-25 days, and 0.65 ± 0.05 %, 1.65 ± 0.08 % and 1.68 ± 0.08 % at 31-34 days. The KO mice showed severe respiratory depression at lower isoflurane concentrations than the WT and HZ mice. We observed an increased isoflurane anesthetic sensitivity and severe respiratory depression in the KO mice. The respiratory depression during anesthesia was strongly progressive with age. Since the pathophysiological consequences from complex I deficiency are mainly reflected in the central nervous system and our mouse model involves progressive encephalopathy, further investigation of isoflurane effects on brain mitochondrial function is warranted.
The mechanism by which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death is the subject of intense scrutiny due to its preferential targeting of transformed cells for deletion. Based on recent findings that the... more
The mechanism by which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death is the subject of intense scrutiny due to its preferential targeting of transformed cells for deletion. Based on recent findings that the TRAIL-dependent death inducing signaling complex (DISC) forms and signals at the plasma membrane without being internalized, we investigated the possibility that agents that prevent endocytosis may stabilize the surface bound DISC and thereby enhance TRAIL-dependent signaling. We utilized phenylarsine oxide (PAO), a trivalent arsenical that has been reported to inhibit endocytosis and to induce mitochondrial permeability transition. Therefore PAO could, by two separate and independent activities, enhance TRAIL-induced killing. Paradoxically, we found that rather than synergizing with TRAIL, PAO was an effective inhibitor of TRAIL-induced killing. Recruitment of FADD and caspase-8 to the TRAIL-dependent DISC was diminished in a concentration-dependent manner in cells exposed to PAO. The effects of PAO could not be reversed by washing cells under non-reducing conditions, suggesting covalent linkage of PAO with its cellular target(s); however, 2,3-dimercaptoethanol effectively overcame the inhibitory action of PAO and restored sensitivity to TRAIL-induced apoptosis. PAO inhibited formation of the TRAIL-dependent DISC and therefore prevented all subsequent apoptotic events.