Skip to main content
Research Interests:
Molecular distances obtained by measuring similarity of large DNA fragments using DNA hybridization procedures are an alternative to distances based on sequences of particular genes or their products. However, when studying small animals,... more
Molecular distances obtained by measuring similarity of large DNA fragments using DNA hybridization procedures are an alternative to distances based on sequences of particular genes or their products. However, when studying small animals, the low amount of DNA that can be ...
In Escherichia coli hosts, hydrogen peroxide is one of the factors that may cause induction of λ prophage. Here, we demonstrate that H2O2-mediated λ prophage induction is significantly enhanced in the oxyR mutant host. The mRNA levels for... more
In Escherichia coli hosts, hydrogen peroxide is one of the factors that may cause induction of λ prophage. Here, we demonstrate that H2O2-mediated λ prophage induction is significantly enhanced in the oxyR mutant host. The mRNA levels for cI gene expression were increased in a λ lysogen in the presence of H2O2. On the other hand, stimulation of the pM promoter by cI857 overproduced from a multicopy plasmid was decreased in the ΔoxyR mutant in the presence of H2O2 but not under normal growth conditions. The purified OxyR protein did bind specifically to the pM promoter region. This binding impaired efficiency of interaction of the cI protein with the OR3 site, while stimulating such a binding to OR2 and OR1 sites, in the regulatory region of the pM promoter. We propose that changes in cI gene expression, perhaps in combination with moderately induced SOS response, may be responsible for enhanced λ prophage induction by hydrogen peroxide in the oxyR mutant. Therefore, OxyR seems to be a factor stimulating λ prophage maintenance under conditions of oxidative stress. This proposal is discussed in the light of efficiency of induction of lambdoid prophages bearing genes coding for Shiga toxins.
The question of what properties of biological systems allow for efficient evolutionary search in complex fitness landscapes (evolvability) is one of the central interests both for the research in the field of evolutionary biology and... more
The question of what properties of biological systems allow for efficient evolutionary search in complex fitness landscapes (evolvability) is one of the central interests both for the research in the field of evolutionary biology and artificial life. Here, we attempt to address this issue by using a model of 3D multicellular development in which cell fate is determined by differential