Skip to main content
Lamen Sryh

    Lamen Sryh

    The reuse of CDW as a coarse aggregate in the production of new concrete could potentially conserve natural resources, reduce the amount of landfill waste and reduce energy consumption; this would contribute to improved sustainability... more
    The reuse of CDW as a coarse aggregate in the production of new concrete could potentially conserve natural resources, reduce the amount of landfill waste and reduce energy consumption; this would contribute to improved sustainability within the construction sector. The extensive scientific research conducted on this subject to date has concluded that in comparison to natural aggregate (NA), the quality of recycled aggregate (RA) is generally poorer and replacement with recycled aggregate has a negative impact on all concrete properties. The most noticeable effect is on time-dependent deformation (i.e. creep and shrinkage). This has meant that the use of recycled aggregate concrete in various construction applications has been restricted. In this study, an experimental programme has been carried out to examine the effect of incorporating recycled aggregate and steel fibres on the mechanical properties, creep, shrinkage, long-term loss of tension stiffening and long-term flexural behaviour of beams under sustained loads. The results obtained from the tests indicated that replacement with recycled aggregate reduced all concrete properties but the addition of steel fibres proved to be highly beneficial and, in fact, countered the detrimental effect of the recycled aggregate. For instance, it was found that the addition of 0.5% and 1.0% steel fibres to concrete containing 50% and 100% recycled aggregate, respectively, resulted in concrete with almost the same performance as normal concrete. An analytical investigation was also conducted to evaluate the suitability of existing code procedures for predicting the long-term deflection of concrete beams incorporating recycled aggregate and steel fibres. It was found that there were shortcomings within the existing codes when analysing these materials and modifications to the Eurocode 2 method were thus proposed. A numerical analysis program was developed using MATLAB language for predicting the long-term deflection of beams based on the proposed modifications. The program was used for validating the modifications by using the experimental results from this research and previous studies in the literature. In addition, a 3D finite element analysis was carried out using the commercial software Midas FEA which included the development of a novel approach for predicting the long-term deflection of cracked reinforced concrete beams containing recycled aggregate and steel fibres. The approach was verified by comparing the finite element analysis predictions with the experimental results from this study and data selected from previous investigations. Sensitivity and parametric studies were carried out to investigate the effect of some model and structural parameters.
    Laboratory tests were carried out to investigate the effect of steel fibres and recycled aggregate on the drying shrinkage and creep deformations of concrete. Steel fibres (Dramix 3D 65/35BG) were added to the mixes and washed... more
    Laboratory tests were carried out to investigate the effect of steel fibres and recycled aggregate on the drying shrinkage and creep deformations of concrete. Steel fibres (Dramix 3D 65/35BG) were added to the mixes and washed construction and demolition wastes (CDW size 20mm) were used as a coarse recycled aggregate. The main variables of this study are the steel fibre contents; Vf = 0, 0.5 and 1.0% and the recycled aggregate replacement percentages; RP= 0, 50 and 100%. Small prisms (75×75×200mm) and bobbins (75×365mm) were cast (for 9 mixes), cured (for 28 days) and tested (for up to 90 days). A fine natural aggregate was used in all mixes and the amount of cement and the water-to-cement ratio was kept constant. The results showed that there are significant increments in drying shrinkage, compressive creep and tensile creep by 18%, 15% and 8% were recorded respectively when 50% of the recycled aggregate was used. However, when 100% of the recycled aggregate was replaced, the following results were achieved 38%, 29% and 15% respectively. In contrast, the effect of adding 0.5% of steel fibres content recorded reductions in these deformations (drying shrinkage, compressive creep and tensile creep) by 7%, 3% and 10% respectively. However, further reductions with percentages of 15%, 5% and 20% respectively were seen when 1.0% of fibre content was added. Interestingly, steel fibres had a significant effect on tensile creep and shrinkage, but little effect on compressive creep.
    This paper presents the results of an investigation into the long-term flexural behaviour of cracked reinforced recycled aggregate concrete (RAC) beams. Washed construction and demolition wastes (CDW) with a maximum size of 20 mm were... more
    This paper presents the results of an investigation into the long-term flexural behaviour of cracked reinforced recycled aggregate concrete (RAC) beams. Washed construction and demolition wastes (CDW) with a maximum size of 20 mm were used as the coarse recycled aggregate. The main variable in the research was the replacement ratio of recycled aggregate. Specimens with 0%, 50% and 100% recycled aggregate were cast and tested. The experimental results showed that samples with an increased amount of recycled aggregate had significantly reduced strength and a noticeable increase in both short-term and long-term deflection of RAC beams over equivalent normal concrete (NC) beams. Increased levels of RA resulted in greater creep and shrinkage of RAC and greater long-term loss of tension stiffening in RAC reinforced tension specimens. Prediction of long-term deflections using Eurocode 2, even after incorporating the experimental concrete properties within the Code method, underestimated th...
    The reuse of CDW as a coarse aggregate in the production of new concrete could potentially conserve natural resources, reduce the amount of landfill waste and reduce energy consumption; this would contribute to improved sustainability... more
    The reuse of CDW as a coarse aggregate in the production of new concrete could potentially conserve natural resources, reduce the amount of landfill waste and reduce energy consumption; this would contribute to improved sustainability within the construction sector. The extensive scientific research conducted on this subject to date has concluded that in comparison to natural aggregate (NA), the quality of recycled aggregate (RA) is generally poorer and replacement with recycled aggregate has a negative impact on all concrete properties. The most noticeable effect is on time-dependent deformation (i.e. creep and shrinkage). This has meant that the use of recycled aggregate concrete in various construction applications has been restricted. In this study, an experimental programme has been carried out to examine the effect of incorporating recycled aggregate and steel fibres on the mechanical properties, creep, shrinkage, long-term loss of tension stiffening and long-term flexural beh...
    In recent years, there has been a great tendency, especially in the field of structural engineering, to use environmentally friendly materials. Therefore, such these materials should be combined with concrete and cement mortar to obtain... more
    In recent years, there has been a great tendency, especially in the field of structural engineering, to use environmentally friendly materials. Therefore, such these materials should be combined with concrete and cement mortar to obtain an environmental and cheaper structural component that has distinctive properties such as lower thermal and sound conductivity and produce lightweight members. In this study, the sand in the cement mortar of the reference mix was replaced by residues of sawdust for different levels ranging between (5, 10, and 15%) by volume. Two methods were used to cure the specimens of this study; the first by immersing the specimens in water, and the second by exposing them to the air under laboratory conditions. Different tests were conducted in order to assess; the air content of fresh mortar, consistency of fresh mortar, compressive strength, flexural strength, and conductivity. From the obtained results, as the percentage of sawdust increased, a significant improvement in sound conductivity was observed. Although the compressive and flexural strength decreased with increasing the percentage of sawdust (up to 15%), this decrease can be considered acceptable for several construction applications. Moreover, the increasing in the percentage of sawdust was noted to be accompanied by an increasing in the percentage of air content. This allows obtaining a lightweight cement mortar with suitable mechanical properties which can be used for various constructions.
    يهدف هذا البحث إلى دراسة تأثير إضافة ألياف الحديد على خواص الخرسانة وسلوك الانحناء في الكمرات الخرسانية المسلحة. حيث تضمن البرنامج العملي اختبار مجموعة من الكمرات الخرسانية المسلحة وعينات خرسانية محتوية على نسب حجمية مختلفة من ألياف... more
    يهدف هذا البحث إلى دراسة تأثير إضافة ألياف الحديد على خواص الخرسانة وسلوك الانحناء في الكمرات الخرسانية المسلحة. حيث تضمن البرنامج العملي اختبار مجموعة من الكمرات الخرسانية المسلحة وعينات خرسانية محتوية على نسب حجمية مختلفة من ألياف الحديد لدراسة تأثير إضافة هذا النوع من الألياف على مقاومة الخرسانة في الضغط والشد الغير مباشر والانحناء. كما تضمن هذا البحث نمذجة ثلاثية الأبعاد للكمرات الخرسانية المسلحة المحتوية على ألياف الحديد باستخدام إحدى برامج نظرية العناصر المحدودة ويسمى (Midas FEA).
    أظهرت النتائج المعملية أن إضافة ألياف الحديد لها أثر إيجابي واضح على تحسين خواص الخرسانة وسلوك الانحناء في الكمرات المسلحة. حيث سجّلت النتائج زيادة واضحة في مقاومتي الضغط والشد الغير مباشر وصلت إلى 60% و110% على التوالي بالمقارنة مع العينات المرجعية المصنعة بدون ألياف. وسجلت نتائج اختبار الكمرات الخرسانية المسلحة المحتوية على ألياف الحديد زيادة ملحوظة في قيم حمل التشقق الأول والمقاومة القصوى مع نقصان واضح في قيم الانحراف وصل إلى نسبة 40% في العينات المحتوية على ألياف. كما بينت النتائج المتحصل عليها من النمذجة ثلاثية الأبعاد باستخدام برنامج (Midas FEA) تطابقاً كبيرًا بالمقارنة مع النتائج المعملية مؤكدة دقة النموذج الرياضي المستخدم.
    أجريت هذه الدراسة لغرض الوصول إلى نتائج معملية واضحة عن تأثر خواص الخرسانة المتمثلة في مقاومتها للضغط والخواص التي لها علاقة مباشرة بديمومتها مثل: المسامية، نسبة الامتصاص والنفاذية وذلك عند إضافة نسب مختلفة من ألياف البولي بروبالين إلى... more
    أجريت هذه الدراسة لغرض الوصول إلى نتائج معملية واضحة عن تأثر خواص الخرسانة المتمثلة في مقاومتها للضغط والخواص التي لها علاقة مباشرة بديمومتها مثل: المسامية، نسبة الامتصاص والنفاذية وذلك عند إضافة نسب مختلفة من ألياف البولي بروبالين إلى الخلطة الخرسانية. حيث تم في هذه الدراسة استخدام نسب إضافة للبولي بروبالين ضمن الحدود المسموح بها في المواصفات (0.05 – 0.2%) من حجم الخرسانة وأكثر منها بنسبة إضافة (0.4%) لمقارنتها مع نتائج العينات المرجعية للخرسانة المصنعة بدون ألياف.
    أثبتت النتائج النهائية لهذه الدراسة أن إضافة ألياف البولي بروبالين للخرسانة بنسبة (0.1%) من حجم الخرسانة (والتي تعادل 0.9 كجم/م3) يعمل على تقليل مساميتها ونسبة امتصاصها وكذلك نفاذيتها إلي أقل ما يمكن بالمقارنة مع بقية العينات، وإن زيادة استخدام هذه الألياف بنسب إضافة أعلى يجعل من الخرسانة أكثر مسامية وشراهة على امتصاص الماء وأكثر نفاذية. كذلك بينت نتائج مقارنة تأثير إضافة ألياف البولي بروبالين على عينات مصنعة من خرسانة ذات مقاومات ضغط مختلفة ازدياداً واضحاً في قيم المسامية ونسب الامتصاص والنفاذية للعينات ذات مقاومة الضغط الأعلى بالمقارنة مع نظيرتها من العينات ذات المقاومة الأقل. كما أظهرت النتائج أيضا عدم جودة استخدام ألياف البولي بروبالين في تحسين مقاومة الخرسانة للضغط وذلك عند إضافتها بأي نسبة، لذلك يجب أن يراعى هذا التأثير في الاعتبارات التصميمية للعناصر الانشائية المصنعة من هذا النوع من الخرسانة.
    يهدف هذا البحث إلى دراسة تأثير إضافة ألياف الحديد على خواص الخرسانة وسلوك الانحناء في الكمرات الخرسانية المسلحة. حيث تضمن البرنامج العملي اختبار مجموعة من الكمرات الخرسانية المسلحة وعينات خرسانية محتوية على نسب حجمية مختلفة من ألياف... more
    يهدف هذا البحث إلى دراسة تأثير إضافة ألياف الحديد على خواص الخرسانة وسلوك الانحناء في الكمرات الخرسانية المسلحة. حيث تضمن البرنامج العملي اختبار مجموعة من الكمرات الخرسانية المسلحة وعينات خرسانية محتوية على نسب حجمية مختلفة من ألياف الحديد لدراسة تأثير إضافة هذا النوع من الألياف على مقاومة الخرسانة في الضغط والشد الغير مباشر والانحناء. كما تضمن هذا البحث نمذجة ثلاثية الأبعاد للكمرات الخرسانية المسلحة المحتوية على ألياف الحديد باستخدام إحدى برامج نظرية العناصر المحدودة ويسمى (Midas FEA).
    أظهرت النتائج المعملية أن إضافة ألياف الحديد لها أثر إيجابي واضح على تحسين خواص الخرسانة وسلوك الانحناء في الكمرات المسلحة. حيث سجّلت النتائج زيادة واضحة في مقاومتي الضغط والشد الغير مباشر وصلت إلى 60% و110% على التوالي بالمقارنة مع العينات المرجعية المصنعة بدون ألياف. وسجلت نتائج اختبار الكمرات الخرسانية المسلحة المحتوية على ألياف الحديد زيادة ملحوظة في قيم حمل التشقق الأول والمقاومة القصوى مع نقصان واضح في قيم الانحراف وصل إلى نسبة 40% في العينات المحتوية على ألياف. كما بينت النتائج المتحصل عليها من النمذجة ثلاثية الأبعاد باستخدام برنامج (Midas FEA) تطابقاً كبيرًا بالمقارنة مع النتائج المعملية مؤكدة دقة النموذج الرياضي المستخدم.
    Laboratory tests were carried out to investigate the effect of steel fibres and recycled aggregate on the drying shrinkage and creep deformations of concrete. Steel fibres (Dramix 3D 65/35BG) were added to the mixes and washed... more
    Laboratory tests were carried out to investigate the effect of steel fibres and recycled aggregate on the drying shrinkage and creep deformations of concrete. Steel fibres (Dramix 3D 65/35BG) were added to the mixes and washed construction and demolition wastes (CDW size 20mm) were used as a coarse recycled aggregate. The main variables of this study are the steel fibre contents; Vf = 0, 0.5 and 1.0% and the recycled aggregate replacement percentages; RP= 0, 50 and 100%. Small prisms (75×75×200mm) and bobbins (75×365mm) were cast (for 9 mixes), cured (for 28 days) and tested (for up to 90 days). A fine natural aggregate was used in all mixes and the amount of cement and the water-to-cement ratio was kept constant. The results showed that there are significant increments in drying shrinkage, compressive creep and tensile creep by 18%, 15% and 8% were recorded respectively when 50% of the recycled aggregate was used. However, when 100% of the recycled aggregate was replaced, the following results were achieved 38%, 29% and 15% respectively. In contrast, the effect of adding 0.5% of steel fibres content recorded reductions in these deformations (drying shrinkage, compressive creep and tensile creep) by 7%, 3% and 10% respectively. However, further reductions with percentages of 15%, 5% and 20% respectively were seen when 1.0% of fibre content was added. Interestingly, steel fibres had a significant effect on tensile creep and shrinkage, but little effect on compressive creep.
    This paper presents an experimental investigation into the effect of steel fibres on the mechanical properties of recycled aggregate concrete. Steel fibres (DRAMIX 3D 65/35BG) were added to the mixes and washed construction and demolition... more
    This paper presents an experimental investigation into the effect of steel fibres on the mechanical properties of recycled aggregate concrete. Steel fibres (DRAMIX 3D 65/35BG) were added to the mixes and washed construction and demolition wastes (size 20mm) as a coarse recycled aggregate were used. The variables of this study were: different steel fibre contents; (V f) = 0, 0.5, 1.0 and 1.5% and replacement percentages of recycled aggregate; (RP) = 0, 50 and 100%. Cubes (100×100×100mm), cylinders (150×300mm) and prisms (100×100×500mm) were cast and tested at an age of 28 days. The results showed that the addition of steel fibres enhanced the cube compressive strength, splitting tensile strength, flexural strength and the modulus of elasticity by 1-5%, 11-55%, 16-53% and 4-15%, respectively, in comparison to the specimens without fibres. Interestingly, the results of the cylinder compressive strength tests were 5-25% greater than those results recorded from the cube tests. Keywords: steel fibre, recycled aggregate concrete, compressive strength, splitting tensile strength, flexural strength and the modulus of elasticity.