Tags: caches

6

sparkline

Thursday, November 12th, 2020

Caching and storing

When I was speaking at conferences last year about service workers, I’d introduce the Cache API. I wanted some way of explaining the difference between caching and other kinds of storage.

The way I explained was that, while you might store stuff for a long time, you’d only cache stuff that you knew you were going to need again. So according to that definition, when you make a backup of your hard drive, that’s not caching …becuase you hope you’ll never need to use the backup.

But that explanation never sat well with me. Then more recently, I was chatting with Amber about caching. Once again, we trying to define the difference between, say, the Cache API and things like LocalStorage and IndexedDB. At some point, we realised the fundamental difference: caches are for copies.

Think about it. If you store something in LocalStorage or IndexedDB, that’s the canonical home for that data. But anything you put into a cache must be a copy of something that exists elsewhere. That’s true of the Cache API, the browser cache, and caches on the server. An item in one of those caches is never the original—it’s always a copy of something that has a canonical home elsewhere.

By that definition, backing up your hard drive definitely is caching.

Anyway, I was glad to finally have a working definition to differentiate between caching and storing.

Thursday, August 20th, 2020

Service Workers | Go Make Things

Chris Ferdinandi blogs every day about the power of vanilla JavaScript. For over a week now, his daily posts have been about service workers. The cumulative result is this excellent collection of resources.

Tuesday, July 2nd, 2019

The trimCache function in Going Offline …again

It seems that some code that I wrote in Going Offline is haunted. It’s the trimCache function.

First, there was the issue of a typo. Or maybe it’s more of a brainfart than a typo, but either way, there’s a mistake in the syntax that was published in the book.

Now it turns out that there’s also a problem with my logic.

To recap, this is a function that takes two arguments: the name of a cache, and the maximum number of items that cache should hold.

function trimCache(cacheName, maxItems) {

First, we open up the cache:

caches.open(cacheName)
.then( cache => {

Then, we get the items (keys) in that cache:

cache.keys()
.then(keys => {

Now we compare the number of items (keys.length) to the maximum number of items allowed:

if (keys.length > maxItems) {

If there are too many items, delete the first item in the cache—that should be the oldest item:

cache.delete(keys[0])

And then run the function again:

.then(
    trimCache(cacheName, maxItems)
);

A-ha! See the problem?

Neither did I.

It turns out that, even though I’m using then, the function will be invoked immediately, instead of waiting until the first item has been deleted.

Trys helped me understand what was going on by making a useful analogy. You know when you use setTimeout, you can’t put a function—complete with parentheses—as the first argument?

window.setTimeout(doSomething(someValue), 1000);

In that example, doSomething(someValue) will be invoked immediately—not after 1000 milliseconds. Instead, you need to create an anonymous function like this:

window.setTimeout( function() {
    doSomething(someValue)
}, 1000);

Well, it’s the same in my trimCache function. Instead of this:

cache.delete(keys[0])
.then(
    trimCache(cacheName, maxItems)
);

I need to do this:

cache.delete(keys[0])
.then( function() {
    trimCache(cacheName, maxItems)
});

Or, if you prefer the more modern arrow function syntax:

cache.delete(keys[0])
.then( () => {
    trimCache(cacheName, maxItems)
});

Either way, I have to wrap the recursive function call in an anonymous function.

Here’s a gist with the updated trimCache function.

What’s annoying is that this mistake wasn’t throwing an error. Instead, it was causing a performance problem. I’m using this pattern right here on my own site, and whenever my cache of pages or images gets too big, the trimCaches function would get called …and then wouldn’t stop running.

I’m very glad that—witht the help of Trys at last week’s Homebrew Website Club Brighton—I was finally able to get to the bottom of this. If you’re using the trimCache function in your service worker, please update the code accordingly.

Management regrets the error.

Sunday, November 11th, 2018

Push without notifications

On the first day of Indie Web Camp Berlin, I led a session on going offline with service workers. This covered all the usual use-cases: pre-caching; custom offline pages; saving pages for offline reading.

But on the second day, Sebastiaan spent a fair bit of time investigating a more complex use of service workers with the Push API.

The Push API is what makes push notifications possible on the web. There are a lot of moving parts—browser, server, service worker—and, frankly, it’s way over my head. But I’m familiar with the general gist of how it works. Here’s a typical flow:

  1. A website prompts the user for permission to send push notifications.
  2. The user grants permission.
  3. A whole lot of complicated stuff happens behinds the scenes.
  4. Next time the website publishes something relevant, it fires a push message containing the details of the new URL.
  5. The user’s service worker receives the push message (even if the site isn’t open).
  6. The service worker creates a notification linking to the URL, interrupting the user, and generally adding to the weight of information overload.

Here’s what Sebastiaan wanted to investigate: what if that last step weren’t so intrusive? Here’s the alternate flow he wanted to test:

  1. A website prompts the user for permission to send push notifications.
  2. The user grants permission.
  3. A whole lot of complicated stuff happens behinds the scenes.
  4. Next time the website publishes something relevant, it fires a push message containing the details of the new URL.
  5. The user’s service worker receives the push message (even if the site isn’t open).
  6. The service worker fetches the contents of the URL provided in the push message and caches the page. Silently.

It worked.

I think this could be a real game-changer. I don’t know about you, but I’m very, very wary of granting websites the ability to send me push notifications. In fact, I don’t think I’ve ever given a website permission to interrupt me with push notifications.

You’ve seen the annoying permission dialogues, right?

In Firefox, it looks like this:

Will you allow name-of-website to send notifications?

[Not Now] [Allow Notifications]

In Chrome, it’s:

name-of-website wants to

Show notifications

[Block] [Allow]

But in actual fact, these dialogues are asking for permission to do two things:

  1. Receive messages pushed from the server.
  2. Display notifications based on those messages.

There’s no way to ask for permission just to do the first part. That’s a shame. While I’m very unwilling to grant permission to be interrupted by intrusive notifications, I’d be more than willing to grant permission to allow a website to silently cache timely content in the background. It would be a more calm technology.

Think of the use cases:

  • I grant push permission to a magazine. When the magazine publishes a new article, it’s cached on my device.
  • I grant push permission to a podcast. Whenever a new episode is published, it’s cached on my device.
  • I grant push permission to a blog. When there’s a new blog post, it’s cached on my device.

Then when I’m on a plane, or in the subway, or in any other situation without a network connection, I could still visit these websites and get content that’s fresh to me. It’s kind of like background sync in reverse.

There’s plenty of opportunity for abuse—the cache could get filled with content. But websites can already do that, and they don’t need to be granted any permissions to do so; just by visiting a website, it can add multiple files to a cache.

So it seems that the reason for the permissions dialogue is all about displaying notifications …not so much about receiving push messages from the server.

I wish there were a way to implement this background-caching pattern without requiring the user to grant permission to a dialogue that contains the word “notification.”

I wonder if the act of adding a site to the home screen could implicitly grant permission to allow use of the Push API without notifications?

In the meantime, the proposal for periodic synchronisation (using background sync) could achieve similar results, but in a less elegant way; periodically polling for new content instead of receiving a push message when new content is published. Also, it requires permission. But at least in this case, the permission dialogue should be more specific, and wouldn’t include the word “notification” anywhere.

Thursday, July 5th, 2018

The trimCache function in Going Offline

Paul Yabsley wrote to let me know about an error in Going Offline. It’s rather embarrassing because it’s code that I’m using in the service worker for adactio.com but for some reason I messed it up in the book.

It’s the trimCache function in Chapter 7: Tidying Up. That’s the reusable piece of code that recursively reduces the number of items in a specified cache (cacheName) to a specified amount (maxItems). On page 95 and 96 I describe the process of creating the function which, in the book, ends up like this:

 function trimCache(cacheName, maxItems) {
   cacheName.open( cache => {
     cache.keys()
     .then( items => {
       if (items.length > maxItems) {
         cache.delete(items[0])
         .then(
           trimCache(cacheName, maxItems)
         ); // end delete then
       } // end if
     }); // end keys then
   }); // end open
 } // end function

See the problem? It’s right there at the start when I try to open the cache like this:

cacheName.open( cache => {

That won’t work. The open method only works on the caches object—I should be passing the name of the cache into the caches.open method. So the code should look like this:

caches.open( cacheName )
.then( cache => {

Everything else remains the same. The corrected trimCache function is here:

function trimCache(cacheName, maxItems) {
  caches.open(cacheName)
  .then( cache => {
    cache.keys()
    .then(items => {
      if (items.length > maxItems) {
        cache.delete(items[0])
        .then(
          trimCache(cacheName, maxItems)
        ); // end delete then
      } // end if
    }); // end keys then
  }); // end open then
} // end function

Sorry about that! I must’ve had some kind of brainfart when I was writing (and describing) that one line of code.

You may want to deface your copy of Going Offline by taking a pen to that code example. Normally I consider the practice of writing in books to be barbarism, but in this case …go for it.

Update: There was another error in the code for trimCache! Here’s the fix.

Wednesday, January 11th, 2017

A Tale of Four Caches · Yoav Weiss

A cute explanation of different browser caches:

  • memory cache,
  • service worker cache,
  • disk cache, and
  • push cache.