The problem of hallucination and omission, a long-standing problem in machine translation (MT), is more pronounced when a large language model (LLM) is used in MT because an LLM itself is susceptible to these phenomena. In this work, we mitigate the problem in an LLM-based MT model by guiding it to better word alignment. We first study the correlation between word alignment and the phenomena of hallucination and omission in MT. Then we propose to utilize word alignment as preference to optimize the LLM-based MT model. The preference data are constructed by selecting chosen and rejected translations from multiple MT tools. Subsequently, direct preference optimization is used to optimize the LLM-based model towards the preference signal. Given the absence of evaluators specifically designed for hallucination and omission in MT, we further propose selecting hard instances and utilizing GPT-4 to directly evaluate the performance of the models in mitigating these issues. We verify the rationality of these designed evaluation methods by experiments, followed by extensive results demonstrating the effectiveness of word alignment-based preference optimization to mitigate hallucination and omission. On the other hand, although it shows promise in mitigating hallucination and omission, the overall performance of MT in different language directions remains mixed, with slight increases in BLEU and decreases in COMET.
Post-editing is crucial in the real world because neural machine translation (NMT) sometimes makes errors.Automatic post-editing (APE) attempts to correct the outputs of an MT model for better translation quality.However, many APE models are based on sequence generation, and thus their decisions are harder to interpret for actual users.In this paper, we propose “detector–corrector”, an edit-based post-editing model, which breaks the editing process into two steps, error detection and error correction.The detector model tags each MT output token whether it should be corrected and/or reordered while the corrector model generates corrected words for the spans identified as errors by the detector.Experiments on the WMT’20 English–German and English–Chinese APE tasks showed that our detector–corrector improved the translation edit rate (TER) compared to the previous edit-based model and a black-box sequence-to-sequence APE model, in addition, our model is more explainable because it is based on edit operations.
In this paper, we propose a two-phase training approach where pre-trained large language models are continually pre-trained on parallel data and then supervised fine-tuned with a small amount of high-quality parallel data. To investigate the effectiveness of our proposed approach, we conducted continual pre-training with a 3.8B-parameter model and parallel data across eight different formats. We evaluate these methods on thirteen test sets for Japanese-to-English and English-to-Japanese translation. The results demonstrate that when utilizing parallel data in continual pre-training, it is essential to alternate between source and target sentences. Additionally, we demonstrated that the translation accuracy improves only for translation directions where the order of source and target sentences aligns between continual pre-training data and inference. In addition, we demonstrate that the LLM-based translation model is more robust in translating spoken language and achieves higher accuracy with less training data compared to supervised encoder-decoder models. We also show that the highest accuracy is achieved when the data for continual pre-training consists of interleaved source and target sentences and when tags are added to the source sentences.
Argument Mining (AM) aims to uncover the argumentative structures within a text. Previous methods require several subtasks, such as span identification, component classification, and relation classification. Consequently, these methods need rule-based postprocessing to derive argumentative structures from the output of each subtask. This approach adds to the complexity of the model and expands the search space of the hyperparameters. To address this difficulty, we propose a simple yet strong method based on a text-to-text generation approach using a pretrained encoder-decoder language model. Our method simultaneously generates argumentatively annotated text for spans, components, and relations, eliminating the need for task-specific postprocessing and hyperparameter tuning. Furthermore, because it is a straightforward text-to-text generation method, we can easily adapt our approach to various types of argumentative structures.Experimental results demonstrate the effectiveness of our method, as it achieves state-of-the-art performance on three different types of benchmark datasets: the Argument-annotated Essays Corpus (AAEC), AbstRCT, and the Cornell eRulemaking Corpus (CDCP).
This overview paper presents the results of the General Machine Translation Task organised as part of the 2024 Conference on Machine Translation (WMT). In the general MT task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting of three to five different domains. In addition to participating systems, we collected translations from 8 different large language models (LLMs) and 4 online translation providers. We evaluate system outputs with professional human annotators using a new protocol called Error Span Annotations (ESA).
Acquiring large-scale parallel corpora is crucial for NLP tasks such asNeural Machine Translation, and web crawling has become a popularmethodology for this purpose. Previous studies have been conductedbased on sentence-based segmentation (SBS) when aligning documents invarious languages which are obtained through web crawling. Among them,the TK-PERT method (Thompson and Koehn, 2020) achieved state-of-the-artresults and addressed the boilerplate text in web crawling data wellthrough a down-weighting approach. However, there remains a problemwith how to handle long-text encoding better. Thus, we introduce thestrategy of Overlapping Fixed-Length Segmentation (OFLS) in place ofSBS, and observe a pronounced enhancement when performing the sameapproach for document alignment. In this paper, we compare the SBS andOFLS using three previous methods, Mean-Pool, TK-PERT (Thompson andKoehn, 2020), and Optimal Transport (Clark et al., 2019; El- Kishky andGuzman, 2020), on the WMT16 document alignment shared task forFrench-English, as well as on our self-established Japanese-Englishdataset MnRN. As a result, for the WMT16 task, various SBS basedmethods showed an increase in recall by 1% to 10% after reproductionwith OFLS. For MnRN data, OFLS demonstrated notable accuracyimprovements and exhibited faster document embedding speed.
We constructed JaParaPat (Japanese-English Parallel Patent Application Corpus), a bilingual corpus of more than 300 million Japanese-English sentence pairs from patent applications published in Japan and the United States from 2000 to 2021. We obtained the publication of unexamined patent applications from the Japan Patent Office (JPO) and the United States Patent and Trademark Office (USPTO). We also obtained patent family information from the DOCDB, that is a bibliographic database maintained by the European Patent Office (EPO). We extracted approximately 1.4M Japanese-English document pairs, which are translations of each other based on the patent families, and extracted about 350M sentence pairs from the document pairs using a translation-based sentence alignment method whose initial translation model is bootstrapped from a dictionary-based sentence alignment. We experimentally improved the accuracy of the patent translations by 20 bleu points by adding more than 300M sentence pairs obtained from patent applications to 22M sentence pairs obtained from the web.
Most existing word alignment methods rely on manual alignment datasets or parallel corpora, which limits their usefulness. Here, to mitigate the dependence on manual data, we broaden the source of supervision by relaxing the requirement for correct, fully-aligned, and parallel sentences. Specifically, we make noisy, partially aligned, and non-parallel paragraphs in this paper. We then use such a large-scale weakly-supervised dataset for word alignment pre-training via span prediction. Extensive experiments with various settings empirically demonstrate that our approach, which is named WSPAlign, is an effective and scalable way to pre-train word aligners without manual data. When fine-tuned on standard benchmarks, WSPAlign has set a new state of the art by improving upon the best supervised baseline by 3.3 6.1 points in F1 and 1.5 6.1 points in AER. Furthermore, WSPAlign also achieves competitive performance compared with the corresponding baselines in few-shot, zero-shot and cross-lingual tests, which demonstrates that WSPAlign is potentially more practical for low-resource languages than existing methods.
Retrieve-edit-rerank is a text generation framework composed of three steps: retrieving for sentences using the input sentence as a query, generating multiple output sentence candidates, and selecting the final output sentence from these candidates. This simple approach has outperformed other existing and more complex methods. This paper focuses on the retrieving and the reranking steps. In the retrieving step, we propose retrieving similar target language sentences from a target language monolingual translation memory using language-independent sentence embeddings generated by mSBERT or LaBSE. We demonstrate that this approach significantly outperforms existing methods that use monolingual inter-sentence similarity measures such as edit distance, which is only applicable to a parallel translation memory. In the reranking step, we propose a new reranking score for selecting the best sentences, which considers both the log-likelihood of each candidate and the sentence embeddings based similarity between the input and the candidate. We evaluated the proposed method for English-to-Japanese translation on the ASPEC and English-to-French translation on the EU Bookshop Corpus (EUBC). The proposed method significantly exceeded the baseline in BLEU score, especially observing a 1.4-point improvement in the EUBC dataset over the original Retrieve-Edit-Rerank method.
Recently, there has been a growing interest in pretraining models in the field of natural language processing. As opposed to training models from scratch, pretrained models have been shown to produce superior results in low-resource translation tasks. In this paper, we introduced the use of pretrained seq2seq models for preordering and translation tasks. We utilized manual word alignment data and mBERT-based generated word alignment data for training preordering and compared the effectiveness of various types of mT5 and mBART models for preordering. For the translation task, we chose mBART as our baseline model and evaluated several input manners. Our approach was evaluated on the Asian Language Treebank dataset, consisting of 20,000 parallel data in Japanese, English and Hindi, where Japanese is either on the source or target side. We also used in-house 3,000 parallel data in Chinese and Japanese. The results indicated that mT5-large trained with manual word alignment achieved a preordering performance exceeding 0.9 RIBES score on Ja-En and Ja-Zh pairs. Moreover, our proposed approach significantly outperformed the baseline model in most translation directions of Ja-En, Ja-Zh, and Ja-Hi pairs in at least one of BLEU/COMET scores.
Although a machine translation model trained with a large in-domain parallel corpus achieves remarkable results, it still works poorly when no in-domain data are available. This situation restricts the applicability of machine translation when the target domain’s data are limited. However, there is great demand for high-quality domain-specific machine translation models for many domains. We propose a framework that efficiently and effectively collects parallel sentences in a target domain from the web with the help of crowdworkers.With the collected parallel data, we can quickly adapt a machine translation model to the target domain. Our experiments show that the proposed method can collect target-domain parallel data over a few days at a reasonable cost. We tested it with five domains, and the domain-adapted model improved the BLEU scores to +19.7 by an average of +7.8 points compared to a general-purpose translation model.
To promote and further develop RST-style discourse parsing models, we need a strong baseline that can be regarded as a reference for reporting reliable experimental results. This paper explores a strong baseline by integrating existing simple parsing strategies, top-down and bottom-up, with various transformer-based pre-trained language models.The experimental results obtained from two benchmark datasets demonstrate that the parsing performance strongly relies on the pre-trained language models rather than the parsing strategies.In particular, the bottom-up parser achieves large performance gains compared to the current best parser when employing DeBERTa.We further reveal that language models with a span-masking scheme especially boost the parsing performance through our analysis within intra- and multi-sentential parsing, and nuclearity prediction.
Most current machine translation models are mainly trained with parallel corpora, and their translation accuracy largely depends on the quality and quantity of the corpora. Although there are billions of parallel sentences for a few language pairs, effectively dealing with most language pairs is difficult due to a lack of publicly available parallel corpora. This paper creates a large parallel corpus for English-Japanese, a language pair for which only limited resources are available, compared to such resource-rich languages as English-German. It introduces a new web-based English-Japanese parallel corpus named JParaCrawl v3.0. Our new corpus contains more than 21 million unique parallel sentence pairs, which is more than twice as many as the previous JParaCrawl v2.0 corpus. Through experiments, we empirically show how our new corpus boosts the accuracy of machine translation models on various domains. The JParaCrawl v3.0 corpus will eventually be publicly available online for research purposes.
This paper presents the results of the General Machine Translation Task organised as part of the Conference on Machine Translation (WMT) 2022. In the general MT task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting of four different domains. We evaluate system outputs with human annotators using two different techniques: reference-based direct assessment and (DA) and a combination of DA and scalar quality metric (DA+SQM).
The presence of zero-pronoun (ZP) greatly affects the downstream tasks of NLP in pro-drop languages such as Japanese and Chinese. To tackle the problem, the previous works identified ZPs as sequence labeling on the word sequence or the linearlized tree nodes of the input. We propose a novel approach to ZP identification by casting it as a query-based argument span prediction task. Given a predicate as a query, our model predicts the omission with ZP. In the experiments, our model surpassed the sequence labeling baseline.
Most of the previous Rhetorical Structure Theory (RST) parsing methods are based on supervised learning such as neural networks, that require an annotated corpus of sufficient size and quality. However, the RST Discourse Treebank (RST-DT), the benchmark corpus for RST parsing in English, is small due to the costly annotation of RST trees. The lack of large annotated training data causes poor performance especially in relation labeling. Therefore, we propose a method for improving neural RST parsing models by exploiting silver data, i.e., automatically annotated data. We create large-scale silver data from an unlabeled corpus by using a state-of-the-art RST parser. To obtain high-quality silver data, we extract agreement subtrees from RST trees for documents built using the RST parsers. We then pre-train a neural RST parser with the obtained silver data and fine-tune it on the RST-DT. Experimental results show that our method achieved the best micro-F1 scores for Nuclearity and Relation at 75.0 and 63.2, respectively. Furthermore, we obtained a remarkable gain in the Relation score, 3.0 points, against the previous state-of-the-art parser.
It is crucial to provide an inter-sentence context in Neural Machine Translation (NMT) models for higher-quality translation. With the aim of using a simple approach to incorporate inter-sentence information, we propose mini-batch embedding (MBE) as a way to represent the features of sentences in a mini-batch. We construct a mini-batch by choosing sentences from the same document, and thus the MBE is expected to have contextual information across sentences. Here, we incorporate MBE in an NMT model, and our experiments show that the proposed method consistently outperforms the translation capabilities of strong baselines and improves writing style or terminology to fit the document’s context.
This paper presents the results of the newstranslation task, the multilingual low-resourcetranslation for Indo-European languages, thetriangular translation task, and the automaticpost-editing task organised as part of the Con-ference on Machine Translation (WMT) 2021.In the news task, participants were asked tobuild machine translation systems for any of10 language pairs, to be evaluated on test setsconsisting mainly of news stories. The taskwas also opened up to additional test suites toprobe specific aspects of translation.
We propose a novel method of automatic sentence alignment from noisy parallel documents. We first formalize the sentence alignment problem as the independent predictions of spans in the target document from sentences in the source document. We then introduce a total optimization method using integer linear programming to prevent span overlapping and obtain non-monotonic alignments. We implement cross-language span prediction by fine-tuning pre-trained multilingual language models based on BERT architecture and train them using pseudo-labeled data obtained from unsupervised sentence alignment method. While the baseline methods use sentence embeddings and assume monotonic alignment, our method can capture the token-to-token interaction between the tokens of source and target text and handle non-monotonic alignments. In sentence alignment experiments on English-Japanese, our method achieved 70.3 F1 scores, which are +8.0 points higher than the baseline method. In particular, our method improved by +53.9 F1 scores for extracting non-parallel sentences. Our method improved the downstream machine translation accuracy by 4.1 BLEU scores when the extracted bilingual sentences are used for fine-tuning a pre-trained Japanese-to-English translation model.
This paper presents the results of the news translation task and the similar language translation task, both organised alongside the Conference on Machine Translation (WMT) 2020. In the news task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting mainly of news stories. The task was also opened up to additional test suites to probe specific aspects of translation. In the similar language translation task, participants built machine translation systems for translating between closely related pairs of languages.
Recent machine translation algorithms mainly rely on parallel corpora. However, since the availability of parallel corpora remains limited, only some resource-rich language pairs can benefit from them. We constructed a parallel corpus for English-Japanese, for which the amount of publicly available parallel corpora is still limited. We constructed the parallel corpus by broadly crawling the web and automatically aligning parallel sentences. Our collected corpus, called JParaCrawl, amassed over 8.7 million sentence pairs. We show how it includes a broader range of domains and how a neural machine translation model trained with it works as a good pre-trained model for fine-tuning specific domains. The pre-training and fine-tuning approaches achieved or surpassed performance comparable to model training from the initial state and reduced the training time. Additionally, we trained the model with an in-domain dataset and JParaCrawl to show how we achieved the best performance with them. JParaCrawl and the pre-trained models are freely available online for research purposes.
We made a test set for Japanese-to-English discourse translation to evaluate the power of context-aware machine translation. For each discourse phenomenon, we systematically collected examples where the translation of the second sentence depends on the first sentence. Compared with a previous study on test sets for English-to-French discourse translation (CITATION), we needed different approaches to make the data because Japanese has zero pronouns and represents different senses in different characters. We improved the translation accuracy using context-aware neural machine translation, and the improvement mainly reflects the betterment of the translation of zero pronouns.
In this paper, we introduce University of Tsukuba’s submission to the IWSLT20 Open Domain Translation Task. We participate in both Chinese→Japanese and Japanese→Chinese directions. For both directions, our machine translation systems are based on the Transformer architecture. Several techniques are integrated in order to boost the performance of our models: data filtering, large-scale noised training, model ensemble, reranking and postprocessing. Consequently, our efforts achieve 33.0 BLEU scores for Chinese→Japanese translation and 32.3 BLEU scores for Japanese→Chinese translation.
Dividing biomedical abstracts into several segments with rhetorical roles is essential for supporting researchers’ information access in the biomedical domain. Conventional methods have regarded the task as a sequence labeling task based on sequential sentence classification, i.e., they assign a rhetorical label to each sentence by considering the context in the abstract. However, these methods have a critical problem: they are prone to mislabel longer continuous sentences with the same rhetorical label. To tackle the problem, we propose sequential span classification that assigns a rhetorical label, not to a single sentence but to a span that consists of continuous sentences. Accordingly, we introduce Neural Semi-Markov Conditional Random Fields to assign the labels to such spans by considering all possible spans of various lengths. Experimental results obtained from PubMed 20k RCT and NICTA-PIBOSO datasets demonstrate that our proposed method achieved the best micro sentence-F1 score as well as the best micro span-F1 score.
We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. Since this step is equivalent to a SQuAD v2.0 style question answering task, we solve it using the multilingual BERT, which is fine-tuned on manually created gold word alignment data. It is nontrivial to obtain accurate alignment from a set of independently predicted spans. We greatly improved the word alignment accuracy by adding to the question the source token’s context and symmetrizing two directional predictions. In experiments using five word alignment datasets from among Chinese, Japanese, German, Romanian, French, and English, we show that our proposed method significantly outperformed previous supervised and unsupervised word alignment methods without any bitexts for pretraining. For example, we achieved 86.7 F1 score for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised method.
Question answering (QA) using textual sources for purposes such as reading comprehension (RC) has attracted much attention. This study focuses on the task of explainable multi-hop QA, which requires the system to return the answer with evidence sentences by reasoning and gathering disjoint pieces of the reference texts. It proposes the Query Focused Extractor (QFE) model for evidence extraction and uses multi-task learning with the QA model. QFE is inspired by extractive summarization models; compared with the existing method, which extracts each evidence sentence independently, it sequentially extracts evidence sentences by using an RNN with an attention mechanism on the question sentence. It enables QFE to consider the dependency among the evidence sentences and cover important information in the question sentence. Experimental results show that QFE with a simple RC baseline model achieves a state-of-the-art evidence extraction score on HotpotQA. Although designed for RC, it also achieves a state-of-the-art evidence extraction score on FEVER, which is a recognizing textual entailment task on a large textual database.
In this paper, we propose a multi-hop attention for the Transformer. It refines the attention for an output symbol by integrating that of each head, and consists of two hops. The first hop attention is the scaled dot-product attention which is the same attention mechanism used in the original Transformer. The second hop attention is a combination of multi-layer perceptron (MLP) attention and head gate, which efficiently increases the complexity of the model by adding dependencies between heads. We demonstrate that the translation accuracy of the proposed multi-hop attention outperforms the baseline Transformer significantly, +0.85 BLEU point for the IWSLT-2017 German-to-English task and +2.58 BLEU point for the WMT-2017 German-to-English task. We also find that the number of parameters required for a multi-hop attention is smaller than that for stacking another self-attention layer and the proposed model converges significantly faster than the original Transformer.
Traditional model training for sentence generation employs cross-entropy loss as the loss function. While cross-entropy loss has convenient properties for supervised learning, it is unable to evaluate sentences as a whole, and lacks flexibility. We present the approach of training the generation model using the estimated semantic similarity between the output and reference sentences to alleviate the problems faced by the training with cross-entropy loss. We use the BERT-based scorer fine-tuned to the Semantic Textual Similarity (STS) task for semantic similarity estimation, and train the model with the estimated scores through reinforcement learning (RL). Our experiments show that reinforcement learning with semantic similarity reward improves the BLEU scores from the baseline LSTM NMT model.
Rhetorical Structure Theory (RST) parsing is crucial for many downstream NLP tasks that require a discourse structure for a text. Most of the previous RST parsers have been based on supervised learning approaches. That is, they require an annotated corpus of sufficient size and quality, and heavily rely on the language and domain dependent corpus. In this paper, we present two language-independent unsupervised RST parsing methods based on dynamic programming. The first one builds the optimal tree in terms of a dissimilarity score function that is defined for splitting a text span into smaller ones. The second builds the optimal tree in terms of a similarity score function that is defined for merging two adjacent spans into a large one. Experimental results on English and German RST treebanks showed that our parser based on span merging achieved the best score, around 0.8 F1 score, which is close to the scores of the previous supervised parsers.
An anagram is a sentence or a phrase that is made by permutating the characters of an input sentence or a phrase. For example, “Trims cash” is an anagram of “Christmas”. Existing automatic anagram generation methods can find possible combinations of words form an anagram. However, they do not pay much attention to the naturalness of the generated anagrams. In this paper, we show that simple depth-first search can yield natural anagrams when it is combined with modern neural language models. Human evaluation results show that the proposed method can generate significantly more natural anagrams than baseline methods.
In this paper, we describe our systems that were submitted to the translation shared tasks at WAT 2019. This year, we participated in two distinct types of subtasks, a scientific paper subtask and a timely disclosure subtask, where we only considered English-to-Japanese and Japanese-to-English translation directions. We submitted two systems (En-Ja and Ja-En) for the scientific paper subtask and two systems (Ja-En, texts, items) for the timely disclosure subtask. Three of our four systems obtained the best human evaluation performances. We also confirmed that our new additional web-crawled parallel corpus improves the performance in unconstrained settings.
Recently, the Transformer becomes a state-of-the-art architecture in the filed of neural machine translation (NMT). A key point of its high-performance is the multi-head self-attention which is supposed to allow the model to independently attend to information from different representation subspaces. However, there is no explicit mechanism to ensure that different attention heads indeed capture different features, and in practice, redundancy has occurred in multiple heads. In this paper, we argue that using the same global attention in multiple heads limits multi-head self-attention’s capacity for learning distinct features. In order to improve the expressiveness of multi-head self-attention, we propose a novel Mixed Multi-Head Self-Attention (MMA) which models not only global and local attention but also forward and backward attention in different attention heads. This enables the model to learn distinct representations explicitly among multiple heads. In our experiments on both WAT17 English-Japanese as well as IWSLT14 German-English translation task, we show that, without increasing the number of parameters, our models yield consistent and significant improvements (0.9 BLEU scores on average) over the strong Transformer baseline.
We present neural machine translation models for translating a sentence in a text by using a graph-based encoder which can consider coreference relations provided within the text explicitly. The graph-based encoder can dynamically encode the source text without attending to all tokens in the text. In experiments, our proposed models provide statistically significant improvement to the previous approach of at most 0.9 points in the BLEU score on the OpenSubtitle2018 English-to-Japanese data set. Experimental results also show that the graph-based encoder can handle a longer text well, compared with the previous approach.
This paper describes NTT’s submission to the WMT19 robustness task. This task mainly focuses on translating noisy text (e.g., posts on Twitter), which presents different difficulties from typical translation tasks such as news. Our submission combined techniques including utilization of a synthetic corpus, domain adaptation, and a placeholder mechanism, which significantly improved over the previous baseline. Experimental results revealed the placeholder mechanism, which temporarily replaces the non-standard tokens including emojis and emoticons with special placeholder tokens during translation, improves translation accuracy even with noisy texts.
Although neural tensor networks (NTNs) have been successful in many NLP tasks, they require a large number of parameters to be estimated, which often leads to overfitting and a long training time. We address these issues by applying eigendecomposition to each slice matrix of a tensor to reduce its number of paramters. First, we evaluate our proposed NTN models on knowledge graph completion. Second, we extend the models to recursive NTNs (RNTNs) and evaluate them on logical reasoning tasks. These experiments show that our proposed models learn better and faster than the original (R)NTNs.
A sentence compression method using LSTM can generate fluent compressed sentences. However, the performance of this method is significantly degraded when compressing longer sentences since it does not explicitly handle syntactic features. To solve this problem, we propose a higher-order syntactic attention network (HiSAN) that can handle higher-order dependency features as an attention distribution on LSTM hidden states. Furthermore, to avoid the influence of incorrect parse results, we trained HiSAN by maximizing jointly the probability of a correct output with the attention distribution. Experimental results on Google sentence compression dataset showed that our method achieved the best performance on F1 as well as ROUGE-1,2 and L scores, 83.2, 82.9, 75.8 and 82.7, respectively. In human evaluation, our methods also outperformed baseline methods in both readability and informativeness.
Submodular maximization with the greedy algorithm has been studied as an effective approach to extractive summarization. This approach is known to have three advantages: its applicability to many useful submodular objective functions, the efficiency of the greedy algorithm, and the provable performance guarantee. However, when it comes to compressive summarization, we are currently missing a counterpart of the extractive method based on submodularity. In this paper, we propose a fast greedy method for compressive summarization. Our method is applicable to any monotone submodular objective function, including many functions well-suited for document summarization. We provide an approximation guarantee of our greedy algorithm. Experiments show that our method is about 100 to 400 times faster than an existing method based on integer-linear-programming (ILP) formulations and that our method empirically achieves more than 95%-approximation.
We propose a simple but highly effective automatic evaluation measure of summarization, pruned Basic Elements (pBE). Although the BE concept is widely used for the automated evaluation of summaries, its weakness is that it redundantly matches basic elements. To avoid this redundancy, pBE prunes basic elements by (1) disregarding frequency count of basic elements and (2) reducing semantically overlapped basic elements based on word similarity. Even though it is simple, pBE outperforms ROUGE in DUC datasets in most cases and achieves the highest rank correlation coefficient in TAC 2011 AESOP task.
To improve the translation adequacy in neural machine translation (NMT), we propose a rewarding model with target word prediction using bilingual dictionaries inspired by the success of decoder constraints in statistical machine translation. In particular, the model first predicts a set of target words promising for translation; then boosts the probabilities of the predicted words to give them better chances to be output. Our rewarding model minimally interacts with the decoder so that it can be easily applied to the decoder of an existing NMT system. Extensive evaluation under both resource-rich and resource-poor settings shows that (1) BLEU score improves more than 10 points with oracle prediction, (2) BLEU score improves about 1.0 point with target word prediction using bilingual dictionaries created either manually or automatically, (3) hyper-parameters of our model are relatively easy to optimize, and (4) undergeneration problem can be alleviated in exchange for increasing over-generated words.
This paper investigates the construction of a strong baseline based on general purpose sequence-to-sequence models for constituency parsing. We incorporate several techniques that were mainly developed in natural language generation tasks, e.g., machine translation and summarization, and demonstrate that the sequence-to-sequence model achieves the current top-notch parsers’ performance (almost) without requiring any explicit task-specific knowledge or architecture of constituent parsing.
This paper focuses on subword-based Neural Machine Translation (NMT). We hypothesize that in the NMT model, the appropriate subword units for the following three modules (layers) can differ: (1) the encoder embedding layer, (2) the decoder embedding layer, and (3) the decoder output layer. We find the subword based on Sennrich et al. (2016) has a feature that a large vocabulary is a superset of a small vocabulary and modify the NMT model enables the incorporation of several different subword units in a single embedding layer. We refer these small subword features as hierarchical subword features. To empirically investigate our assumption, we compare the performance of several different subword units and hierarchical subword features for both the encoder and decoder embedding layers. We confirmed that incorporating hierarchical subword features in the encoder consistently improves BLEU scores on the IWSLT evaluation datasets.
Developing a method for understanding the inner workings of black-box neural methods is an important research endeavor. Conventionally, many studies have used an attention matrix to interpret how Encoder-Decoder-based models translate a given source sentence to the corresponding target sentence. However, recent studies have empirically revealed that an attention matrix is not optimal for token-wise translation analyses. We propose a method that explicitly models the token-wise alignment between the source and target sequences to provide a better analysis. Experiments show that our method can acquire token-wise alignments that are superior to those of an attention mechanism.
This paper describes NTT’s neural machine translation systems submitted to the WMT 2018 English-German and German-English news translation tasks. Our submission has three main components: the Transformer model, corpus cleaning, and right-to-left n-best re-ranking techniques. Through our experiments, we identified two keys for improving accuracy: filtering noisy training sentences and right-to-left re-ranking. We also found that the Transformer model requires more training data than the RNN-based model, and the RNN-based model sometimes achieves better accuracy than the Transformer model when the corpus is small.
This paper tackles automation of the pyramid method, a reliable manual evaluation framework. To construct a pyramid, we transform human-made reference summaries into extractive reference summaries that consist of Elementary Discourse Units (EDUs) obtained from source documents and then weight every EDU by counting the number of extractive reference summaries that contain the EDU. A summary is scored by the correspondences between EDUs in the summary and those in the pyramid. Experiments on DUC and TAC data sets show that our methods strongly correlate with various manual evaluations.
This paper proposes a state-of-the-art recurrent neural network (RNN) language model that combines probability distributions computed not only from a final RNN layer but also middle layers. This method raises the expressive power of a language model based on the matrix factorization interpretation of language modeling introduced by Yang et al. (2018). Our proposed method improves the current state-of-the-art language model and achieves the best score on the Penn Treebank and WikiText-2, which are the standard benchmark datasets. Moreover, we indicate our proposed method contributes to application tasks: machine translation and headline generation.
The sequence-to-sequence (Seq2Seq) model has been successfully applied to machine translation (MT). Recently, MT performances were improved by incorporating supervised attention into the model. In this paper, we introduce supervised attention to constituency parsing that can be regarded as another translation task. Evaluation results on the PTB corpus showed that the bracketing F-measure was improved by supervised attention.
This paper proposes a reinforcing method that refines the output layers of existing Recurrent Neural Network (RNN) language models. We refer to our proposed method as Input-to-Output Gate (IOG). IOG has an extremely simple structure, and thus, can be easily combined with any RNN language models. Our experiments on the Penn Treebank and WikiText-2 datasets demonstrate that IOG consistently boosts the performance of several different types of current topline RNN language models.
To analyze the limitations and the future directions of the extractive summarization paradigm, this paper proposes an Integer Linear Programming (ILP) formulation to obtain extractive oracle summaries in terms of ROUGE-N. We also propose an algorithm that enumerates all of the oracle summaries for a set of reference summaries to exploit F-measures that evaluate which system summaries contain how many sentences that are extracted as an oracle summary. Our experimental results obtained from Document Understanding Conference (DUC) corpora demonstrated the following: (1) room still exists to improve the performance of extractive summarization; (2) the F-measures derived from the enumerated oracle summaries have significantly stronger correlations with human judgment than those derived from single oracle summaries.
This paper tackles the reduction of redundant repeating generation that is often observed in RNN-based encoder-decoder models. Our basic idea is to jointly estimate the upper-bound frequency of each target vocabulary in the encoder and control the output words based on the estimation in the decoder. Our method shows significant improvement over a strong RNN-based encoder-decoder baseline and achieved its best results on an abstractive summarization benchmark.
This paper presents an efficient and optimal parsing algorithm for probabilistic context-free grammars (PCFGs). To achieve faster parsing, our proposal employs a pruning technique to reduce unnecessary edges in the search space. The key is to conduct repetitively Viterbi inside and outside parsing, while gradually expanding the search space to efficiently compute heuristic bounds used for pruning. Our experimental results using the English Penn Treebank corpus show that the proposed algorithm is faster than the standard CKY parsing algorithm. In addition, we also show how to extend this algorithm to extract k-best Viterbi parse trees.
We propose prefix constraints, a novel method to enforce constraints on target sentences in neural machine translation. It places a sequence of special tokens at the beginning of target sentence (target prefix), while side constraints places a special token at the end of source sentence (source suffix). Prefix constraints can be predicted from source sentence jointly with target sentence, while side constraints (Sennrich et al., 2016) must be provided by the user or predicted by some other methods. In both methods, special tokens are designed to encode arbitrary features on target-side or metatextual information. We show that prefix constraints are more flexible than side constraints and can be used to control the behavior of neural machine translation, in terms of output length, bidirectional decoding, domain adaptation, and unaligned target word generation.
In this year, we participated in four translation subtasks at WAT 2017. Our model structure is quite simple but we used it with well-tuned hyper-parameters, leading to a significant improvement compared to the previous state-of-the-art system. We also tried to make use of the unreliable part of the provided parallel corpus by back-translating and making a synthetic corpus. Our submitted system achieved the new state-of-the-art performance in terms of the BLEU score, as well as human evaluation.
In applying word-based dependency parsing such as Universal Dependencies (UD) to Japanese, the uncertainty of word segmentation emerges for defining a word unit of the dependencies. We introduce the following hierarchical word structures to dependency parsing in Japanese: morphological units (a short unit word, SUW) and syntactic units (a long unit word, LUW). An SUW can be used to segment a sentence consistently, while it is too short to represent syntactic construction. An LUW is a unit including functional multiwords and LUW-based analysis facilitates the capturing of syntactic structure and makes parsing results more precise than SUW-based analysis. This paper describes the results of a feasibility study on the ability and the effectiveness of parsing methods based on hierarchical word structure (LUW chunking+parsing) in comparison to single layer word structure (SUW parsing). We also show joint analysis of LUW-chunking and dependency parsing improves the performance of identifying predicate-argument structures, while there is not much difference between overall results of them. not much difference between overall results of them.
This paper derives an Integer Linear Programming (ILP) formulation to obtain an oracle summary of the compressive summarization paradigm in terms of ROUGE. The oracle summary is essential to reveal the upper bound performance of the paradigm. Experimental results on the DUC dataset showed that ROUGE scores of compressive oracles are significantly higher than those of extractive oracles and state-of-the-art summarization systems. These results reveal that compressive summarization is a promising paradigm and encourage us to continue with the research to produce informative summaries.
We propose a method for integrating Japanese empty category detection into the preordering process of Japanese-to-English statistical machine translation. First, we apply machine-learning-based empty category detection to estimate the position and the type of empty categories in the constituent tree of the source sentence. Then, we apply discriminative preordering to the augmented constituent tree in which empty categories are treated as if they are normal lexical symbols. We find that it is effective to filter empty categories based on the confidence of estimation. Our experiments show that, for the IWSLT dataset consisting of short travel conversations, the insertion of empty categories alone improves the BLEU score from 33.2 to 34.3 and the RIBES score from 76.3 to 78.7, which imply that reordering has improved For the KFTT dataset consisting of Wikipedia sentences, the proposed preordering method considering empty categories improves the BLEU score from 19.9 to 20.2 and the RIBES score from 66.2 to 66.3, which shows both translation and reordering have improved slightly.
This paper presents our Chinese-to-Japanese patent machine translation system for WAT 2016 (Group ID: ntt) that uses syntactic pre-ordering over Chinese dependency structures. Chinese words are reordered by a learning-to-rank model based on pairwise classification to obtain word order close to Japanese. In this year’s system, two different machine translation methods are compared: traditional phrase-based statistical machine translation and recent sequence-to-sequence neural machine translation with an attention mechanism. Our pre-ordering showed a significant improvement over the phrase-based baseline, but, in contrast, it degraded the neural machine translation baseline.
Summarization aims to represent source documents by a shortened passage. Existing methods focus on the extraction of key information, but often neglect coherence. Hence the generated summaries suffer from a lack of readability. To address this problem, we have developed a graph-based method by exploring the links between text to produce coherent summaries. Our approach involves finding a sequence of sentences that best represent the key information in a coherent way. In contrast to the previous methods that focus only on salience, the proposed method addresses both coherence and informativeness based on textual linkages. We conduct experiments on the DUC2004 summarization task data set. A performance comparison reveals that the summaries generated by the proposed system achieve comparable results in terms of the ROUGE metric, and show improvements in readability by human evaluation.
Syntactic parsing is a fundamental natural language processing technology that has proven useful in machine translation, language modeling, sentence segmentation, and a number of other applications related to speech translation. However, there is a paucity of manually annotated syntactic parsing resources for speech, and particularly for the lecture speech that is the current target of the IWSLT translation campaign. In this work, we present a new manually annotated treebank of TED talks that we hope will prove useful for investigation into the interaction between syntax and these speechrelated applications. The first version of the corpus includes 1,217 sentences and 23,158 words manually annotated with parse trees, and aligned with translations in 26-43 different languages. In this paper we describe the collection of the corpus, and an analysis of its various characteristics.
This paper presents a Japanese-to-English statistical machine translation system specialized for patent translation. Patents are practically useful technical documents, but their translation needs different efforts from general-purpose translation. There are two important problems in the Japanese-to-English patent translation: long distance reordering and lexical translation of many domain-specific terms. We integrated novel lexical translation of domain-specific terms with a syntax-based post-ordering framework that divides the machine translation problem into lexical translation and reordering explicitly for efficient syntax-based translation. The proposed lexical translation consists of a domain-adapted word segmentation and an unknown word transliteration. Experimental results show our system achieves better translation accuracy in BLEU and TER compared to the baseline methods.
The statistical Machine Translation Model has two components: a language model and a translation model. This paper describes how to improve the quality of the translation model by using the common word pairs extracted by two asymmetric learning approaches. One set of word pairs is extracted by Viterbi alignment using a translation model, the other set is extracted by Viterbi alignment using another translation model created by reversing the languages. The common word pairs are extracted as the same word pairs in the two sets of word pairs. We conducted experiments using English and Japanese. Our method improves the quality of a original translation model by 5.7%. The experiments also show that the proposed learning method improves the word alignment quality independent of the training domain and the translation model. Moreover, we show that common word pairs are almost as useful as regular dictionary entries for training purposes.