@inproceedings{rotsztejn-etal-2018-eth,
title = "{ETH}-{DS}3{L}ab at {S}em{E}val-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction",
author = "Rotsztejn, Jonathan and
Hollenstein, Nora and
Zhang, Ce",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1112",
doi = "10.18653/v1/S18-1112",
pages = "689--696",
abstract = "Reliably detecting relevant relations between entities in unstructured text is a valuable resource for knowledge extraction, which is why it has awaken significant interest in the field of Natural Language Processing. In this paper, we present a system for relation classification and extraction based on an ensemble of convolutional and recurrent neural networks that ranked first in 3 out of the 4 Subtasks at SemEval 2018 Task 7. We provide detailed explanations and grounds for the design choices behind the most relevant features and analyze their importance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rotsztejn-etal-2018-eth">
<titleInfo>
<title>ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Rotsztejn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ce</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Reliably detecting relevant relations between entities in unstructured text is a valuable resource for knowledge extraction, which is why it has awaken significant interest in the field of Natural Language Processing. In this paper, we present a system for relation classification and extraction based on an ensemble of convolutional and recurrent neural networks that ranked first in 3 out of the 4 Subtasks at SemEval 2018 Task 7. We provide detailed explanations and grounds for the design choices behind the most relevant features and analyze their importance.</abstract>
<identifier type="citekey">rotsztejn-etal-2018-eth</identifier>
<identifier type="doi">10.18653/v1/S18-1112</identifier>
<location>
<url>https://aclanthology.org/S18-1112</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>689</start>
<end>696</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction
%A Rotsztejn, Jonathan
%A Hollenstein, Nora
%A Zhang, Ce
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F rotsztejn-etal-2018-eth
%X Reliably detecting relevant relations between entities in unstructured text is a valuable resource for knowledge extraction, which is why it has awaken significant interest in the field of Natural Language Processing. In this paper, we present a system for relation classification and extraction based on an ensemble of convolutional and recurrent neural networks that ranked first in 3 out of the 4 Subtasks at SemEval 2018 Task 7. We provide detailed explanations and grounds for the design choices behind the most relevant features and analyze their importance.
%R 10.18653/v1/S18-1112
%U https://aclanthology.org/S18-1112
%U https://doi.org/10.18653/v1/S18-1112
%P 689-696
Markdown (Informal)
[ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction](https://aclanthology.org/S18-1112) (Rotsztejn et al., SemEval 2018)
ACL