@inproceedings{morillo-etal-2024-verbanexai,
title = "{V}erba{N}ex{AI} Lab at {S}em{E}val-2024 Task 1: A Multilayer Artificial Intelligence Model for Semantic Relationship Detection",
author = "Morillo, Anderson and
Pe{\~n}a, Daniel and
Martinez Santos, Juan Carlos and
Puertas, Edwin",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.194/",
doi = "10.18653/v1/2024.semeval-1.194",
pages = "1344--1350",
abstract = "This paper presents an artificial intelligence model designed to detect semantic relationships in natural language, addressing the challenges of SemEval 2024 Task 1. Our goal is to advance machine understanding of the subtleties of human language through semantic analysis. Using a novel combination of convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and an attention mechanism, our model is trained on the STR-2022 dataset. This approach enhances its ability to detect semantic nuances in different texts. The model achieved an 81.92{\%} effectiveness rate and ranked 24th in SemEval 2024 Task 1. These results demonstrate its robustness and adaptability in detecting semantic relationships and validate its performance in diverse linguistic contexts. Our work contributes to natural language processing by providing insights into semantic textual relatedness. It sets a benchmark for future research and promises to inspire innovations that could transform digital language processing and interaction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morillo-etal-2024-verbanexai">
<titleInfo>
<title>VerbaNexAI Lab at SemEval-2024 Task 1: A Multilayer Artificial Intelligence Model for Semantic Relationship Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anderson</namePart>
<namePart type="family">Morillo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Peña</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Martinez Santos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edwin</namePart>
<namePart type="family">Puertas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an artificial intelligence model designed to detect semantic relationships in natural language, addressing the challenges of SemEval 2024 Task 1. Our goal is to advance machine understanding of the subtleties of human language through semantic analysis. Using a novel combination of convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and an attention mechanism, our model is trained on the STR-2022 dataset. This approach enhances its ability to detect semantic nuances in different texts. The model achieved an 81.92% effectiveness rate and ranked 24th in SemEval 2024 Task 1. These results demonstrate its robustness and adaptability in detecting semantic relationships and validate its performance in diverse linguistic contexts. Our work contributes to natural language processing by providing insights into semantic textual relatedness. It sets a benchmark for future research and promises to inspire innovations that could transform digital language processing and interaction.</abstract>
<identifier type="citekey">morillo-etal-2024-verbanexai</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.194</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.194/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1344</start>
<end>1350</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VerbaNexAI Lab at SemEval-2024 Task 1: A Multilayer Artificial Intelligence Model for Semantic Relationship Detection
%A Morillo, Anderson
%A Peña, Daniel
%A Martinez Santos, Juan Carlos
%A Puertas, Edwin
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F morillo-etal-2024-verbanexai
%X This paper presents an artificial intelligence model designed to detect semantic relationships in natural language, addressing the challenges of SemEval 2024 Task 1. Our goal is to advance machine understanding of the subtleties of human language through semantic analysis. Using a novel combination of convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and an attention mechanism, our model is trained on the STR-2022 dataset. This approach enhances its ability to detect semantic nuances in different texts. The model achieved an 81.92% effectiveness rate and ranked 24th in SemEval 2024 Task 1. These results demonstrate its robustness and adaptability in detecting semantic relationships and validate its performance in diverse linguistic contexts. Our work contributes to natural language processing by providing insights into semantic textual relatedness. It sets a benchmark for future research and promises to inspire innovations that could transform digital language processing and interaction.
%R 10.18653/v1/2024.semeval-1.194
%U https://aclanthology.org/2024.semeval-1.194/
%U https://doi.org/10.18653/v1/2024.semeval-1.194
%P 1344-1350
Markdown (Informal)
[VerbaNexAI Lab at SemEval-2024 Task 1: A Multilayer Artificial Intelligence Model for Semantic Relationship Detection](https://aclanthology.org/2024.semeval-1.194/) (Morillo et al., SemEval 2024)
ACL