Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10104 publications
The Case for Validating Inputs in Software-Defined WANs
Rishabh Iyer
Isaac Keslassy
Sylvia Ratnasamy
The 23rd ACM Workshop on Hot Topics in Networks (HOTNETS ’24), ACM, Irvine, CA (2024) (to appear)
Preview abstract
We highlight a problem that the networking community has
largely overlooked: ensuring that the inputs to network controllers in software-
defined WANs are accurate. We we show that “incorrect” inputs are a common
cause of major outages in practice and propose new directions to address these.
View details
Efficient Location Sampling Algorithms for Road Networks
Vivek Kumar
Ameya Velingker
Santhoshini Velusamy
WebConf (2024)
Preview abstract
Many geographic information systems applications rely on the data provided by user devices in the road network. Such applications include traffic monitoring, driving navigation, detecting road closures or the construction of new roads, etc. This signal is collected by sampling locations from the user trajectories and is a critical process for all such systems. Yet, it has not been sufficiently studied in the literature. The most natural way to sample a trajectory is perhaps using a frequency based algorithm, e.g., sample every $x$ seconds. However, as we argue in this paper, such a simple strategy can be very wasteful in terms of resources (e.g., server-side processing, user battery) and in terms of the amount of user data that it maintains. In this work we conduct a horizontal study of various location sampling algorithms (including frequency-based, road geography-based, reservoir-sampling based, etc.) and extract their trade-offs in terms of various metrics of interest, such as, the size of the stored data and the induced quality of training for prediction tasks (e.g., predicting speeds) using the road network of New York City.
View details
Beyond SOT: Tracking Multiple Generic Objects at Once
Christoph Mayer
Martin Danelljan
Vittorio Ferrari
Luc Van Gool
WACV'24 (2024)
Preview abstract
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. However multiobject GOT poses its own challenges and is more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new largescale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows users to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint
tracking of multiple objects simultaneously. In addition, we propose a transformer-based GOT tracker baseline capable of joint processing of multiple objects through shared computation. Our approach achieves a 4× faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. In addition, our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, results and trained models are available at https://github.com/visionml/pytracking.
View details
A scalable system to measure contrail formation on a per-flight basis
Erica Brand
Sebastian Eastham
Carl Elkin
Thomas Dean
Zebediah Engberg
Ulrike Hager
Joe Ng
Dinesh Sanekommu
Tharun Sankar
Marc Shapiro
Environmental Research Communications (2024)
Preview abstract
In this work we describe a scalable, automated system to determine from satellite data whether a given flight has made a persistent contrail.
The system works by comparing flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a `flight matching' algorithm and use it to label each flight segment as a `match' or `non-match'. We perform this analysis on 1.6 million flight segments and compare these labels to existing contrail prediction methods based on weather forecast data. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We find that current contrail prediction models fail to correctly predict whether we will match a contrail in many cases.
View details
Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM
Alon Levkovitch
Roy Hirsch
Chulayuth Asawaroengchai
Ehud Rivlin
ICLR (2024)
Preview abstract
We present Spectron, a novel approach to adapting pre-trained large language models (LLMs) to perform spoken question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained endto-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a ‘cross-modal’ chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. We release our audio samples and spoken QA dataset via our website.
View details
PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks
Marina Neseem
Conor McCullough
Randy Hsin
Chas Leichner
Shan Li
In Suk Chong
Andrew Howard
Lukasz Lew
Sherief Reda
Ville-Mikko Rautio
Daniele Moro
Conference on Computer Vision and Pattern Recognition (2024) (to appear)
Preview abstract
Low-precision quantization is recognized for its efficacy in neural network optimization. Our analysis reveals that non-quantized elementwise operations which are prevalent in layers such as parameterized activation functions, batch normalization, and quantization scaling dominate the inference cost of low-precision models. These non-quantized elementwise operations are commonly overlooked in SOTA efficiency metrics such as Arithmetic Computation Effort (ACE). In this paper, we propose ACEv2 - an extended version of ACE which offers a better alignment with the inference cost of quantized models and their energy consumption on ML hardware. Moreover, we introduce PikeLPN, a model that addresses these efficiency issues by applying quantization to both elementwise operations and multiply-accumulate operations. In particular, we present a novel quantization technique for batch normalization layers named QuantNorm which allows for quantizing the batch normalization parameters without compromising the model performance. Additionally, we propose applying Double Quantization where the quantization scaling parameters are quantized. Furthermore, we recognize and resolve the issue of distribution mismatch in Separable Convolution layers by introducing Distribution-Heterogeneous Quantization which enables quantizing them to low-precision. PikeLPN achieves Pareto-optimality in efficiency-accuracy trade-off with up to 3X efficiency improvement compared to SOTA low-precision models.
View details
Preview abstract
This paper discusses a method to inject text when training an ASR system without the need for up sampling the text sequence to match the length of the speech sequence.
View details
Hovering Over the Key to Text Input in XR
Diar Abdlkarim
Arpit Bhatia
Stuart Macgregor
Jason Fotso-Puepi
Hasti Seifi
Massimiliano Di Luca
Karan Ahuja
Preview abstract
Virtual, Mixed, and Augmented Reality (XR) technologies hold immense potential for transforming productivity beyond PC. Therefore there is a critical need for improved text input solutions for XR. However, achieving efficient text input in these environments remains a significant challenge. This paper examines the current landscape of XR text input techniques, focusing on the importance of keyboards (both physical and virtual) as essential tools. We discuss the unique challenges and opportunities presented by XR, synthesizing key trends from existing solutions.
View details
On the Benefits of Traffic “Reprofiling” The Multiple Hops Case – Part I
Henry Sariowan
Jiaming Qiu
Jiayi Song
Roch Guerin
IEEE/ACM Transactions on Networking (2024)
Preview abstract
Abstract—This paper considers networks where user traffic is regulated through deterministic traffic profiles, e.g. token buckets, and requirescleanguaranteed hard delay bounds. The network’s goal is to minimize the resources it needs to meet those cleanrequirementsbounds. The paper explores how reprofiling, i.e. proactively modifying how user traffic enters the network, can be of benefit. Reprofiling produces “smoother” flows but introduces an up-front access delay that forces tighter network delays. The paper explores this trade-off and demonstrates that, unlike what holds in the single-hop case, reprofiling can be of benefit even when “optimal”cleansophisticated schedulers are available at each hop.
View details
UI Mobility Control in XR: Switching UI Positionings between Static, Dynamic, and Self Entities
Siyou Pei
Yang Zhang
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, ACM, pp. 12 (to appear)
Preview abstract
Extended reality (XR) has the potential for seamless user interface (UI) transitions across people, objects, and environments. However, the design space, applications, and common practices of 3D UI transitions remain underexplored. To address this gap, we conducted a need-finding study with 11 participants, identifying and distilling a taxonomy based on three types of UI placements --- affixed to static, dynamic, or self entities. We further surveyed 113 commercial applications to understand the common practices of 3D UI mobility control, where only 6.2% of these applications allowed users to transition UI between entities. In response, we built interaction prototypes to facilitate UI transitions between entities. We report on results from a qualitative user study (N=14) on 3D UI mobility control using our FingerSwitches technique, which suggests that perceived usefulness is affected by types of entities and environments. We aspire to tackle a vital need in UI mobility within XR.
View details
Take it, Leave it, or Fix it: Measuring Productivity and Trust in Human-AI Collaboration
29th International Conference on Intelligent User Interfaces (IUI ’24), ACM, New York, NY, USA (2024)
Preview abstract
Although recent developments in generative AI have greatly enhanced the capabilities of conversational agents such as Google's Bard or OpenAI's ChatGPT, it's unclear whether the usage of these agents aids users across various contexts. To better understand how access to conversational AI affects productivity and trust, we conducted a mixed-methods, task-based user study, observing 76 software engineers (N=76) as they completed a programming exam with and without access to Bard. Effects on performance, efficiency, satisfaction, and trust vary depending on user expertise, question type (open-ended "solve" questions vs. definitive "search" questions), and measurement type (demonstrated vs. self-reported). Our findings include evidence of automation complacency, increased reliance on the AI over the course of the task, and increased performance for novices on “solve”-type questions when using the AI. We discuss common behaviors, design recommendations, and impact considerations to improve collaborations with conversational AI.
View details
Preview abstract
Sequence labeling is a core task in text understanding for IE/IR systems. Text generation models have increasingly become the go-to solution for such tasks (e.g., entity extraction and dialog slot filling). While most research has focused on the labeling accuracy, a key aspect -- of vital practical importance -- has slipped through the cracks: understanding model confidence. More specifically, we lack a principled understanding of how to reliably gauge the confidence of a model in its predictions for each labeled span. This paper aims to provide some empirical insights on estimating model confidence for generative sequence labeling. Most notably, we find that simply using the decoder's output probabilities is not the best in realizing well-calibrated confidence estimates. As verified over six public datasets of different tasks, we show that our proposed approach -- which leverages statistics from top-k predictions by a beam search -- significantly reduces calibration errors of the predictions of a generative sequence labeling model.
View details
Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines
Yuchen Li
Alexandre Kirchmeyer
Aashay Mehta
Yilong Qin
Andrej Risteski
International Conference on Machine Learning (2024) (to appear)
Preview abstract
Autoregressive language models are the currently dominant paradigm for text generation, however they have some fundamental limitations that cannot be remedied by scale ---for example inherently sequential and unidirectional generation. While alternate classes of models have been explored, we have limited mathematical understanding of their fundamental power and limitations. In this paper we focus on Generative Masked Language Models (GMLMs), a non-autoregressive paradigm in which we train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model. These models empirically strike a promising speed-quality trade-off as each step can be typically parallelized by decoding the entire sequence in parallel. We develop a mathematical framework for analyzing and improving such models which sheds light on questions of sample complexity and inference speed and quality. Empirically, we adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality compared with autoregressive models. We run careful ablation experiments to give recommendations on key design choices, and make fine-grained observations on the common error modes in connection with our theory. Our mathematical analyses and empirical observations characterize both potentials and limitations of this approach, and can be applied to future works on improving understanding and performance of GMLMs.
View details
TRINDs: Assessing the Diagnostic Capabilities of Large Language Models for Tropical and Infectious Diseases
Steve Adudans
Oluwatosin Akande
Chintan Ghate
Sylvanus Aitkins
Geoffrey Siwo
Lynda Osadebe
Nenad Tomašev
Eric Ndombi
Preview abstract
Neglected tropical diseases (NTDs) and infectious diseases disproportionately affect the poorest regions of the world. While large language models (LLMs) have shown promise for medical question answering, there is limited work focused on tropical and infectious disease-specific explorations. We introduce TRINDs, a dataset of 52 tropical and infectious diseases with demographic and semantic clinical and consumer augmentations. We evaluate various context and counterfactual locations to understand their influence on LLM performance. Results show that LLMs perform best when provided with contextual information such as demographics, location, and symptoms. We also develop TRINDs-LM, a tool that enables users to enter symptoms and contextual information to receive a most likely diagnosis. In addition to the LLM evaluations, we also conducted a human expert baseline study to assess the accuracy of human experts in diagnosing tropical and infectious diseases with 7 medical and public health experts. This work demonstrates methods for creating and evaluating datasets for testing and optimizing LLMs, and the use of a tool that could improve digital diagnosis and tracking of NTDs.
View details
On the Benefits of Traffic “Reprofiling” The Single Hop Case
Henry Sariowan
Jiaming Qiu
Jiayi Song
Roch Guerin
IEEE/ACM Transactions on Networking (2024)
Preview abstract
Datacenters have become a significant source of traffic, much of which is carried over private networks. The operators of those networks commonly have access to detailed traffic profiles and performance goals, which they seek to meet as efficiently as possible. Of interest are solutions that guarantee latency while minimizing network bandwidth. The paper explores a basic building block towards realizing such solutions, namely, a single hop configuration. The main results are in the form of optimal solutions for meeting local deadlines under schedulers of varying complexity and therefore cost. The results demonstrate how judiciously modifying flows’ traffic profiles, i.e., reprofiling them, can help simple schedulers reduce the bandwidth they require, often performing nearly as well as more complex ones.
View details