[go: up one dir, main page]

Plant Soil Environ., 2022, 68(7):317-327 | DOI: 10.17221/117/2022-PSE

Effect of fertilisation on fungal community in topsoil of winter wheat fieldOriginal Paper

Feihong Zhai1, Tingliang Li2, Xiaorui Qin1, Xiaodong Zhao ORCID...*,1, Liwei Jiang2, Yinghe Xie*,2
1 Department of Biology, Taiyuan Normal University, Jinzhong, P.R. China
2 College of Resources and Environment, Shanxi Agricultural University, Jinzhong, P.R. China

Soil fungi played important roles in the maintenance of soil fertility and soil sustainable development. In this study, the effects of different fertilisers (i.e. bacterial fertiliser (BF), composed of organic matters and bacteria; mineral fertiliser (MF), composed of N, P and K) on soil fungi in wheat field were analysed. The results showed that the yield of winter wheat with BF was 4 788.52 kg/ha, which was significantly higher than that with term MF. Chao 1and Shannon indexes and principal coordinates analysis showed that fertilisation increased the richness of soil fungi to varying degrees and changed the fungal community structure of soil compared with no fertiliser control (NF). The soil fungal community was mainly composed of Ascomycota, Basidiomycota and Mortierellomycota, with Ascomycota as the main species (62.67-65.08%). Compared with MF, the relative abundance of potential beneficial fungi Talaromyces in BF increased 4.44 times. Compared with no fertiliser control, the relative abundance of potential beneficial fungi Chrysosporium in BF increased 4.11 times. The abundance of potential soil pathogenic fungi (P < 0.01), like Stachybotrys, Acrocalymma, Achroiostachys, Arachnomyces and Setophoma, significantly decreased in BF treatment, which was beneficial to the maintenance of crop health and the sustainable development of the environment. Moreover, the network analysis showed that the interspecific relationship of soil fungi in BF was more intimate than MF and NF and fungi were inclined to adopt cooperative manner to adapt ecological niches in BF treatment. The improvement of wheat yield might be due to the optimisation of soil fungal community structure by applying BF, which strengthened the transformation of nutrients in soil, increased some biocontrol microorganism, and reduced the crop disease. The results explain the improvement of wheat yield by BF to a certain extent, and provided theoretical basis for high-yield cultivation of wheat.

Keywords: Triticum aestivum L.; microbial community; high-throughput sequencing; soil activity; nutrient cycling

Published: July 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhai F, Li T, Qin X, Zhao X, Jiang L, Xie Y. Effect of fertilisation on fungal community in topsoil of winter wheat field. Plant Soil Environ.. 2022;68(7):317-327. doi: 10.17221/117/2022-PSE.
Download citation

References

  1. Adams R.I., Miletto M., Taylor J.W., Bruns T.D. (2013): Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal, 7: 1262-1273. Go to original source... Go to PubMed...
  2. Alcorn J.L., Irwin J.A.G. (1987): Acrocalymma medicaginis gen. et sp. nov. causing root and crown rot of Medicago sativa in Australia. Transactions of the British Mycological Society, 88: 163-167. Go to original source...
  3. Ansari R.A., Mahmood I. (2017): Optimization of organic and bioorganic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226: 1-9. Go to original source...
  4. Ashworth A.J., DeBruyn J.M., Allen F.L., Radosevich M., Owens P.R. (2017): Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology and Biochemistry, 114: 210-219. Go to original source...
  5. Biermaier B., Gottschalk C., Schwaiger K., Gareis M. (2015): Occurrence of Stachybotrys chartarum chemotype S in dried culinary herbs. Mycotoxin Research, 31: 23-32. Go to original source... Go to PubMed...
  6. Côrtes M.V.d.C.B., Oliveira M.I.d.S., Mateus J.R., Seldin L., Silva-Lobo V.L., Freire D.M.G. (2021): A pipeline for the genetic improvement of a biological control agent enhances its potential for controlling soil-borne plant pathogens. Biological Control, 152: 104460. Go to original source...
  7. Da Silva M., Umbuzeiro G.A., Pfenning L.H., Canhos V.P., Esposito E. (2010): Filamentous fungi isolated from estuarine sediments contaminated with industrial discharges. Soil and Sediment Contamination, 12: 345-356. Go to original source...
  8. Das K., Lee S.Y., Choi H.W., Eom A.H., Cho Y.J., Jung H.Y. (2020): Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: new records from soil in Korea. Mycobiology, 48: 450-463. Go to original source... Go to PubMed...
  9. Došen I., Andersen B., Phippen C.B.W., Clausen G., Nielsen K.F. (2016): Stachybotrys mycotoxins: from culture extracts to dust samples. Analytical Bioanalytical Chemistry, 408: 5513-5526. Go to original source... Go to PubMed...
  10. Etzel R.A. (2007): Indoor and outdoor air pollution: tobacco smoke, moulds and diseases in infants and children. International Journal of Hygiene and Environmental Health, 210: 611-616. Go to original source... Go to PubMed...
  11. Fan B., Dewapriya P., Li F., Grauso L., Blümel M., Mangoni A., Tasdemir D. (2020): Pyrenosetin D, a new pentacyclic decalinoyltetramic acid derivative from the algicolous fungus Pyrenochaetopsis sp. FVE-087. Marine Drugs, 18: 281. Go to original source... Go to PubMed...
  12. Fujii T., Hoshino T., Inoue H., Yano S. (2014): Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiology Letters, 351: 32-41. Go to original source... Go to PubMed...
  13. Gao C., Montoya L., Xu L., Madera M., Hollingsworth J., Purdom E., Singan V., Vogel J., Hutmacher R.B., Dahlberg J.A., ColemanDerr D., Lemaux P.G., Taylor J.W. (2020): Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communication, 11: 34. Go to original source... Go to PubMed...
  14. Gibas C.F.C., Sigler L., Summerbelly R.C., Hofstader S.L.R., Gupta A.K. (2002): Arachnomyces kanei (anamorph Onychocola kanei) sp. nov., from human nails. Medical Mycology, 40: 573-580. Go to original source... Go to PubMed...
  15. Giraldo A., Gené J., Sutton D.A., Madrid H., de Hoog G.S., Cano J., Decock C., Crous P.W., Guarro J. (2015): Phylogeny of Sarocladium (Hypocreales). Persoonia, 34: 10-24. Go to original source... Go to PubMed...
  16. Goyari S., Devi S.H., Bengyella L., Khan M., Sharma C.K., Kalita M.C., Talukdar N.C. (2015): Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes. Journal of Applied Microbiology, 119: 88-98. Go to original source... Go to PubMed...
  17. Jarvis B.B., Lee Y.W., Cömezoglu S.N., Yatawara C.S. (1986): Trichothecenes produced by Stachybotrys atra from Eastern Europe. Applied and Environmental Microbiology, 5: 915-918. Go to original source... Go to PubMed...
  18. Jarvis B.B., Sorenson W.G., Hintikka E.L., Nikulin M., Zhou Y., Jiang J., Wang S., Hinkley S., Etzel R.A., Dearborn D. (1998): Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Applied and Environmental Microbiology, 10: 3620-3625. Go to original source... Go to PubMed...
  19. Jayasiri S.C., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Jeewon R., Phillips A.J.L., Bhat D.J., Wanasinghe D.N., Liu J.K., Lu Y.Z., Kang J.C., Xu J., Karunarathna S.C. (2019): Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere, 10: 1-186. Go to original source...
  20. Kara Ö., Bolat İ. (2007): Influence of soil compaction on microfungal community structure in two soil types in Bartin province, Turkey. Journal of Basic Microbiology, 47: 394-399. Go to original source... Go to PubMed...
  21. Kohno J., Hirano N., Sugawara K., Nishio M., Hashiyama T., Nakanishi N., Komatsubara S. (2001): Structure of TMC-69, a new antitumor antibiotic from Chrysosporium sp. TC 1068. Tetrahedron, 57: 1731-1735. Go to original source...
  22. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Réblová M., Groenewald J.Z., Crous P.W. (2016): Generic hyperdiversity in Stachybotriaceae. Persoonia, 36: 156-246. Go to original source... Go to PubMed...
  23. Maity A., Pal R.K., Chandra R., Singh N.V. (2014): Penicillium pinophilum - a novel microorganism for nutrient management in pomegranate (Punica granatum L.). Scientia Horticulturae, 169: 111-117. Go to original source...
  24. Markovskaja S., Kačergius A. (2014): Morphological and molecular characterisation of Periconia pseudobyssoides sp. nov. and closely related P. byssoides. Mycological Progress, 13: 291-302. Go to original source...
  25. Miyake T., Kato A., Tateishi H., Teraoka T., Arie T. (2012): Mode of action of Talaromyces sp. KNB422, a biocontrol agent against rice seedling diseases. Journal of Pesticide Science, 37: 1-6. Go to original source...
  26. Naraghi L., Heydari A., Rezaee S., Razavi M. (2012): Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. Journal of Plant Growth Regulation, 31: 471-477. Go to original source...
  27. Naraghi L., Heydari A., Rezaee S., Razavi M., Jahanifar H. (2010): Study on antagonistic effects of Talaromyces flavus on Verticillium albo-atrum, the causal agent of potato wilt disease. Crop Protection, 29: 658-662. Go to original source...
  28. Nielsen K.F., Holm G., Uttrup L.P., Nielsen P.A. (2004): Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration and Biodegradation, 54: 325-336. Go to original source...
  29. Orio A.A.G., Brücher E., Ducasse D.A. (2015): A strain of Bacillus subtilis subsp. subtilis shows a specific antagonistic activity against the soil-borne pathogen of onion Setophoma terrestris. European Journal of Plant Pathology, 144: 217-223. Go to original source...
  30. Paungfoo-Lonhienne C., Yeoh Y.K., Kasinadhuni N.R.P., Lonhienne T.G.A., Robinson N., Hugenholtz P., Ragan M.A., Schmidt S. (2015): Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Scientific Reports, 5: 8678. Go to original source... Go to PubMed...
  31. Prasannakumar M.K., Parivallal P.B., Pramesh D., Mahesh H.B., Raj E. (2021): LAMP-based foldable microdevice platform for the rapid detection of Magnaporthe oryzae and Sarocladium oryzae in rice seed. Scientific Reports, 11: 178. Go to original source... Go to PubMed...
  32. Rivera-Méndez W., Brenes-Madriz J., Alvarado-Marchena L. (2021): Effect of Setophoma terrestris, Sclerotium cepivorum, and Trichoderma spp. on in vitro onion (Allium cepa) root tissues and the final yield at the field. European Journal of Plant Pathology, 160: 53-65. Go to original source...
  33. Siciliano S.D., Palmer A.S., Winsley T., Lamb E., Bissett A., Brown M.V., van Dorst J., Ji M., Ferrari B.C., Grogan P., Chu H., Snape I. (2014): Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry, 78: 10-20. Go to original source...
  34. Sun B.D., Zhou Y.G., Chen A.J., Houbraken J. (2019): Phylogeny and a new species of the genus Arachnomyces (Arachnomycetaceae). Phytotaxa, 394: 89-97. Go to original source...
  35. Tsipouras A., Goetz M.A., Hensens O.D., Liesch J.M., Ostlind D.A., Williamson J.M., Dombrowski A.W., Ball R.G., Singh S.B. (1997): Sporandol: a novel antiparasitic binaphthalene from Chrysosporium meridarium. Bioorganic and Medicinal Chemistry Letters, 7: 1279-1282. Go to original source...
  36. Ulrich S., Niessen L., Ekruth J., Schäfer C., Kaltner F., Gottschalk C. (2020): Truncated satratoxin gene clusters in selected isolates of the atranone chemotype of Stachybotrys chartarum (Ehrenb.) S. Hughes. Mycotoxin Research, 36: 83-91. Go to original source... Go to PubMed...
  37. Wang J., Song Y., Ma T., Raza W., Li J., Howland J.G., Huang Q., Shen Q. (2017): Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112: 42-50. Go to original source...
  38. Yadav B.K., Tarafdar J.C. (2011): Penicillium purpurogenum, unique P mobilizers in arid agro-ecosystems. Arid Land Research and Management, 25: 87-99. Go to original source...
  39. Yamagiwa Y., Inagaki Y., Ichinose Y., Toyoda K., Hyakumachi M., Shiraishi T. (2011): Talaromyces wortmannii FS2 emits ß-caryphyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology, 77: 336-341. Go to original source...
  40. Yamashita M., Kawai Y., Uchida I., Komori T., Kohsaka M., Imanaka H., Sakane K., Setoi H., Teraji T. (1984): Structure and total synthesis of chryscandin, a new antifungal antibiotic. Tetrahedron Letters, 41: 4489-4692. Go to original source...
  41. Yang Y., Cheng H., Dou Y., An S. (2020): Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Science of the Total Environment, 708: 134560. Go to original source... Go to PubMed...
  42. Yao H., Jiao X., Wu F. (2006): Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil, 284: 195-203. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.