[go: up one dir, main page]

login
A290576
Apéry-like numbers Sum_{k=0..n} Sum_{l=0..n} (C(n,k)^2*C(n,l)*C(k,l)*C(k+l,n)).
46
1, 3, 27, 309, 4059, 57753, 866349, 13492251, 216077787, 3536145057, 58875891777, 994150929951, 16984143140589, 293036113226223, 5098773125244483, 89368239352074309, 1576424378494272987, 27964450505226314673, 498550055166916502121
OFFSET
0,2
COMMENTS
Sequence zeta (formula 4.12) in Almkvist, Straten, Zudilin article.
LINKS
G. Almkvist, D. van Straten, and W. Zudilin, Generalizations of Clausen’s formula and algebraic transformations of Calabi-Yau differential equations, Proc. Edinburgh Math. Soc.54 (2) (2011), 273-295.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See zeta p. 3.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
FORMULA
a(0) = 1, a(1) = 3,
a(n+1) = ( (2*n+1)*(9*n^2+9*n+3)*a(n) + 27*n^3*a(n-1) ) / (n+1)^3.
a(n) ~ 3^(3*n/2 + 1) * (1+sqrt(3))^(2*n+1) / (2^(n + 5/2) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Jul 10 2021
G.f.: hypergeom([1/12,5/12],[1],(12*x/(1-6*x-27*x^2))^3)^2/(1-6*x-27*x^2)^(1/2). - Mark van Hoeij, Nov 11 2022
MAPLE
f:= gfun:-rectoproc({a(0)=1, a(1)=3, a(n+1) = ( (2*n+1)*(9*n^2+9*n+3)*a(n) + 27*n^3*a(n-1) ) / (n+1)^3}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Aug 07 2017
MATHEMATICA
Table[Sum[Sum[(Binomial[n, k]^2*Binomial[n, j] Binomial[k, j] Binomial[k + j, n]), {j, 0, n} ], {k, 0, n}], {n, 0, 18}] (* Michael De Vlieger, Aug 07 2017 *)
PROG
(PARI) C=binomial;
a(n) = sum(k=0, n, sum(l=0, n, C(n, k)^2 * C(n, l) * C(k, l) * C(k+l, n) ));
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sequence in context: A200903 A365149 A318108 * A291315 A364965 A078532
KEYWORD
nonn,easy
AUTHOR
Hugo Pfoertner, Aug 06 2017
STATUS
approved