[go: up one dir, main page]

login
A268387
Bitwise-XOR of the exponents of primes in the prime factorization of n.
18
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 2, 2, 0, 3, 3, 1, 1, 1, 5, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 2, 0, 2, 0, 0, 1, 2, 1, 0, 3, 6, 0, 1, 1, 3, 0, 1, 1, 1, 1, 0, 3, 3, 0, 1, 1, 5, 4, 0, 1, 2, 0, 0, 0, 2, 1, 2, 0, 3, 0, 0, 0, 4, 1, 3, 3, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 0, 5, 1, 1, 0, 3, 3, 0, 0, 3
OFFSET
1,4
COMMENTS
The sums of the first 10^k terms, for k = 1, 2, ..., are 11, 139, 1427, 14207, 141970, 1418563, 14183505, 141834204, 1418330298, 14183245181, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.4183... . - Amiram Eldar, Sep 10 2022
FORMULA
a(1) = 0; for n > 1: a(n) = A067029(n) XOR a(A028234(n)). [Here XOR stands for bitwise exclusive-or, A003987.]
Other identities and observations. For all n >= 1:
a(n) <= A267116(n) <= A001222(n).
From Peter Munn, Dec 02 2019 with XOR used as above: (Start)
Defined by: a(p^k) = k, for prime p; a(A059897(n,k)) = a(n) XOR a(k).
a(A052330(n XOR k)) = a(A052330(n)) XOR a(A052330(k)).
a(A019565(n XOR k)) = a(A019565(n)) XOR a(A019565(k)).
(End)
MATHEMATICA
Table[BitXor @@ Map[Last, FactorInteger@ n], {n, 120}] (* Michael De Vlieger, Feb 12 2016 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A268387 n) (cond ((= 1 n) 0) (else (A003987bi (A067029 n) (A268387 (A028234 n)))))) ;; A003987bi implements bitwise-xor (see A003987).
(PARI) a(n) = {my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitxor(b, f[k, 2]); ); b; } \\ Michel Marcus, Feb 06 2016
(Python)
from functools import reduce
from operator import xor
from sympy import factorint
def A268387(n): return reduce(xor, factorint(n).values(), 0) # Chai Wah Wu, Aug 31 2022
CROSSREFS
A003987, A028234, A059897 and A067029 are used to express relationships between sequence terms.
Cf. A268390 (indices of zeros).
Sequences with similar definitions: A267115, A267116.
Differs from A136566 for the first time at n=24, where a(24) = 2, while A136566(24) = 4.
Sequence in context: A319273 A329615 A272894 * A136566 A330235 A048983
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Feb 05 2016
STATUS
approved