OFFSET
0,2
COMMENTS
This sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A250469 to the parent:
1
|
...................2...................
4 3
8......../ \........9 6......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 21 18 25 12 15 10 7
32 45 42 55 36 51 50 49 24 33 30 35 20 27 14 11
etc.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8192
Antti Karttunen, Entanglement Permutations, 2016-2017
FORMULA
MATHEMATICA
(* b = A250469 *) b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1 + 2 == k2, Return[m2]]]];
a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], 2 a[n/2], b[a[(n-1)/2]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2016 *)
PROG
KEYWORD
AUTHOR
Antti Karttunen, Jan 02 2015
STATUS
approved