[go: up one dir, main page]

login
A218742
a(n) = (39^n - 1)/38.
3
0, 1, 40, 1561, 60880, 2374321, 92598520, 3611342281, 140842348960, 5492851609441, 214221212768200, 8354627297959801, 325830464620432240, 12707388120196857361, 495588136687677437080, 19327937330819420046121, 753789555901957381798720, 29397792680176337890150081
OFFSET
0,3
COMMENTS
Partial sums of powers of 39 (A009983).
FORMULA
a(n) = floor(39^n/38).
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-39*x)).
a(n) = 40*a(n-1) - 39*a(n-2). (End)
E.g.f.: exp(20*x)*sinh(19*x)/19. - Elmo R. Oliveira, Aug 29 2024
MATHEMATICA
LinearRecurrence[{40, -39}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
(39^Range[0, 20]-1)/38 (* Harvey P. Dale, Mar 05 2023 *)
PROG
(PARI) a(n)=39^n\38
(Magma) [n le 2 select n-1 else 40*Self(n-1) - 39*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(Maxima) A218742(n):=(39^n-1)/38$
makelist(A218742(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved