[go: up one dir, main page]

login
A159888
Numbers congruent to {-5,29,39,41,43,45,55,57,59,93,103,105,107,109,119,121} mod 256.
2
29, 39, 41, 43, 45, 55, 57, 59, 93, 103, 105, 107, 109, 119, 121, 251, 285, 295, 297, 299, 301, 311, 313, 315, 349, 359, 361, 363, 365, 375, 377, 507, 541, 551, 553, 555, 557, 567, 569, 571, 605, 615, 617, 619, 621, 631, 633, 763, 797, 807, 809, 811, 813, 823, 825
OFFSET
1,1
COMMENTS
When will this first differ from A159887, the trajectory of 29 under repeated application of the map n -> A102370(n)?
A bound on the sequences starting to differ is when the appearance of 2^135 - 135 here is followed by 2^135 - 5. This is because A102370(2^135 - 135) = 2^136 - 5. - Peter Munn, Jan 12 2024
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
MATHEMATICA
Select[Range[900], MemberQ[{29, 39, 41, 43, 45, 55, 57, 59, 93, 103, 105, 107, 109, 119, 121, 251}, Mod[#, 256]]&] (* Harvey P. Dale, Mar 09 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {29, 39, 41, 43, 45, 55, 57, 59, 93, 103, 105, 107, 109, 119, 121, 251, 285}, 55] (* Ray Chandler, Jul 15 2015 *)
PROG
(Magma) [n: n in [1..1000] | n mod 256 in [-5, 29, 39, 41, 43, 45, 55, 57, 59, 93, 103, 105, 107, 109, 119, 121, 251]]; // Vincenzo Librandi, Mar 11 2014
CROSSREFS
Sequence in context: A114616 A166311 A159887 * A108325 A242555 A101007
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Apr 25 2009
EXTENSIONS
Corrected by Harvey P. Dale, Mar 09 2014
Edited by Peter Munn, Dec 06 2023
STATUS
approved