[go: up one dir, main page]

login
A242555
Least number k such that k^32+n^32 is prime.
1
1, 29, 40, 33, 34, 131, 50, 9, 8, 11, 10, 13, 12, 97, 166, 221, 200, 13, 10, 61, 176, 23, 22, 65, 94, 151, 352, 87, 2, 1, 38, 39, 4, 5, 48, 137, 18, 11, 4, 3, 60, 55, 40, 9, 106, 33, 10, 29, 134, 7, 44, 33, 50, 1, 38, 5, 148, 37, 2, 41, 10, 11, 94, 75, 4, 5, 100, 5, 22
OFFSET
1,2
COMMENTS
If a(n) = 1, then n is in A006315.
MATHEMATICA
lnk[n_]:=Module[{k=1, n32=n^32}, While[!PrimeQ[n32+k^32], k++]; k]; Array[ lnk, 70] (* Harvey P. Dale, Apr 26 2018 *)
PROG
(Python)
import sympy
from sympy import isprime
def a(n):
..for k in range(10**4):
....if isprime(n**32+k**32):
......return k
n = 1
while n < 100:
..print(a(n))
..n += 1
(PARI) a(n)=for(k=1, 10^3, if(ispseudoprime(n^32+k^32), return(k)));
n=1; while(n<100, print(a(n)); n+=1)
CROSSREFS
Sequence in context: A159887 A159888 A108325 * A101007 A253252 A155575
KEYWORD
nonn
AUTHOR
Derek Orr, May 17 2014
STATUS
approved