[go: up one dir, main page]

login
A128159
a(n) = least k such that the remainder when 19^k is divided by k is n.
26
2, 17, 358, 5, 7, 13, 118, 11, 22, 207, 14, 6683, 21, 1055, 221, 6843, 86, 39959, 23, 559, 34, 129, 26, 25, 51, 799, 334, 33, 166, 47427581, 1537, 901, 68, 39, 326, 87169, 44, 161, 46, 3509, 341, 529, 106, 1098179, 158, 657, 314, 49621349, 75, 143, 62, 749, 116
OFFSET
1,1
COMMENTS
a(447) = 7987803178, a(660) = 11147676413, a(923) = 6246715274. - Daniel Morel, Jun 08 2010
a(216) = 21686254249, a(296) = 40778012377, a(386) = 15891209603, a(582) = 46530896443, a(638) = 15297472657, a(736) = 45211411479, a(872) = 106458212591. - Daniel Morel, Oct 15 2010
MATHEMATICA
t = Table[0, {10000} ]; k = 1; While[ k < 3100000000, a = PowerMod[19, k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Aug 04 2009 *)
clk=Compile[{{n, _Integer}}, {k=1}; While[PowerMod[19, k, k]!=n, k++]; k]; Array[ clk, 55] (* Harvey P. Dale, May 10 2014 *)
KEYWORD
hard,nonn
AUTHOR
Alexander Adamchuk, Feb 16 2007
EXTENSIONS
More terms from Ryan Propper, Mar 24 2007
More terms from Robert G. Wilson v, Aug 04 2009
STATUS
approved