[go: up one dir, main page]

login
A128162
a(n) = 3^n modulo Fibonacci(n).
3
0, 0, 1, 0, 3, 1, 3, 9, 31, 34, 37, 81, 137, 347, 487, 690, 355, 1369, 2001, 1926, 5331, 1369, 4823, 8289, 74043, 77951, 188571, 284781, 490766, 166409, 1333373, 1803615, 1516839, 914943, 3619092, 3987873, 17604245, 8506938, 57277423, 24741861
OFFSET
1,5
COMMENTS
Numbers k such that a(k) is prime are listed in A128163. Corresponding primes in {a(n)} are {3, 3, 31, 37, 137, 347, 487, 77951, 166409, 13506083561, ...}.
LINKS
MAPLE
f:= n -> 3 &^ n mod combinat:-fibonacci(n):
map(f, [$1..100]); # Robert Israel, Jul 10 2020
MATHEMATICA
Table[PowerMod[3, n, Fibonacci[n]], {n, 1, 100}]
PROG
(Sage) [power_mod(3, n, fibonacci(n))for n in range(1, 41)] # - Zerinvary Lajos, Nov 28 2009
(PARI) a(n)=3^n%fibonacci(n) \\ Charles R Greathouse IV, Jun 19 2017
CROSSREFS
Cf. A128163, A128161, A057862 (2^n modulo Fibonacci(n)).
Sequence in context: A146436 A058842 A155734 * A257253 A067329 A170860
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Feb 19 2007
STATUS
approved