[go: up one dir, main page]

login
A103295
Number of complete rulers with length n.
41
1, 1, 1, 3, 4, 9, 17, 33, 63, 128, 248, 495, 988, 1969, 3911, 7857, 15635, 31304, 62732, 125501, 250793, 503203, 1006339, 2014992, 4035985, 8080448, 16169267, 32397761, 64826967, 129774838, 259822143, 520063531, 1040616486, 2083345793, 4168640894, 8342197304, 16694070805, 33404706520, 66832674546, 133736345590
OFFSET
0,4
COMMENTS
For definitions, references and links related to complete rulers see A103294.
Also the number of compositions of n whose consecutive subsequence-sums cover an initial interval of the positive integers. For example, (2,3,1) is such a composition because (1), (2), (3), (3,1), (2,3), and (2,3,1) are subsequences with sums covering {1..6}. - Gus Wiseman, May 17 2019
a(n) ~ c*2^n, where 0.2427 < c < 0.2459. - Fei Peng, Oct 17 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..49
Scott Harvey-Arnold, Steven J. Miller, and Fei Peng, Distribution of missing differences in diffsets, arXiv:2001.08931 [math.CO], 2020.
Peter Luschny, Perfect rulers
Hugo Pfoertner, Count complete rulers of given length. FORTRAN program.
FORMULA
a(n) = Sum_{i=0..n} A103294(n, i) = Sum_{i=A103298(n)..n} A103294(n, i).
EXAMPLE
a(4) = 4 counts the complete rulers with length 4, {[0,2,3,4],[0,1,3,4],[0,1,2,4],[0,1,2,3,4]}.
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], SubsetQ[ReplaceList[#, {___, s__, ___}:>Plus[s]], Range[n]]&]], {n, 0, 15}] (* Gus Wiseman, May 17 2019 *)
CROSSREFS
Cf. A103300 (Perfect rulers with length n). Main diagonal of A349976.
Sequence in context: A339152 A003611 A192115 * A352134 A304257 A217492
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 28 2005
EXTENSIONS
a(30)-a(36) from Hugo Pfoertner, Mar 17 2005
a(37)-a(38) from Hugo Pfoertner, Dec 10 2021
a(39) from Hugo Pfoertner, Dec 16 2021
STATUS
approved