[go: up one dir, main page]

login
A064911
If n is semiprime (or 2-almost prime) then 1 else 0.
77
0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65545 (first 10000 terms from Reinhard Zumkeller)
Eric Weisstein's World of Mathematics, Semiprime
Eric Weisstein's World of Mathematics, Prime zeta function primezeta(s).
FORMULA
a(n) = 1 iff n is in A001358 (semiprimes), a(n) = 0 iff n is in A100959 (non-semiprimes). - Reinhard Zumkeller, Nov 24 2004
Dirichlet g.f.: (primezeta(2s) + primezeta(s)^2)/2. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = A057427(A174956(n)); a(n)*A072000(n) = A174956(n). - Reinhard Zumkeller, Apr 03 2010
a(n) = A010051(A032742(n)) (i.e., largest proper divisor is prime). - Reinhard Zumkeller, Mar 13 2011
From Antti Karttunen, Apr 24 2018 & Apr 22 2022: (Start)
a(n) = A280710(n) + A302048(n) = A101040(n) - A010051(n).
a(n) = A353478(n) + A353480(n) = A353477(n) + A353478(n) + A353479(n).
a(n) = A353475(n) + A353476(n).
(End)
MAPLE
with(numtheory):
a:= n-> `if`(bigomega(n)=2, 1, 0):
seq(a(n), n=1..120); # Alois P. Heinz, Mar 16 2011
MATHEMATICA
Table[If[PrimeOmega[n] == 2, 1, 0], {n, 105}] (* Jayanta Basu, May 25 2013 *)
PROG
(Haskell) a064911 = a010051 . a032742 -- Reinhard Zumkeller, Mar 13 2011
(PARI) a(n)=bigomega(n)==2 \\ Charles R Greathouse IV, Mar 13 2011
KEYWORD
nonn
AUTHOR
Patrick De Geest, Oct 13 2001
EXTENSIONS
Edited by M. F. Hasler, Oct 18 2017
STATUS
approved