OFFSET
0,1
COMMENTS
Named after the German mathematician Carl Friedrich Gauss (1777-1855), the Russian mathematician Rodion Kuzmin (1891-1949) and the German mathematician Eduard Wirsing (1931-2022). - Amiram Eldar, May 29 2021
REFERENCES
Tim Bedford, Michael Keane and Caroline Series, eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford, 1991, esp. p. 204.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 151-156.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..381
Keith Briggs, A precise computation of the Gauss-Kuzmin-Wirsing constant, 2003.
Hervé Daudé, Philippe Flajolet and Brigitte Vallée, An analysis of the Gaussian algorithm for lattice reduction, in: L. M. Adleman and M. D. Huang (eds.), Algorithmic Number Theory, First International Symposium, ANTS-I Ithaca, NY, USA, May 6-9, 1994, Proceedings, Lecture Notes in Computer Science, Vol. 877, Springer, Berlin, Heidelberg, 1994, pp. 144-158; Inria preprint.
Steven R. Finch, The Gauss-Kuzmin-Wirsing Constant. [Broken link]
Steven R. Finch, The Gauss-Kuzmin-Wirsing Constant. [From the Wayback machine]
Simon Plouffe, The Gauss-Kuzmin-Wirsing constant.
Simon Plouffe, The Gauss-Kuzmin-Wirsing constant.
Eric Weisstein's World of Mathematics, Kuzmin-Wirsing Constant.
EXAMPLE
0.303663002898732658597448121901...
MATHEMATICA
m[j_ , k_] := m[j, k] = ((-1)^j/(j!*(-2)^k))* Sum[Binomial[k, i]*(-2)^i*Pochhammer[i+2, j]* (Zeta[i+j+2]*(2^(i+j+2) - 1) - 2^(i+j+2)), {i, 0, k}] // N[#, 120]&; n = 230; $MaxExtraPrecision = 300; t = Table[m[j, k] , {j, 0, n-1}, {k, 0, n-1}] ; g = (Sort @ Abs @ Eigenvalues[t])[[-2]]; RealDigits[g, 10, 105] // First (* Jean-François Alcover, Jun 29 2011, after MathWorld *)
PROG
(PARI) { default(realprecision, 382); lambda=0.\
30366300289873265859744812190155623311087735225365\
78951882454814672269952942469109843408119343636368\
11098272263710616938474614859745801316065265381818\
23787913244613989647642974095044629375949048702977\
28772511058335175922044472408659119650778105589295\
79186714752925653642591844121784234492057255294269\
10040657788006767324303643964013896927671340737822\
86711534915435462112848419717968; x=10*lambda; for (n=0, 381, d=floor(x); x=(x-d)*10; write("b038517.txt", n, " ", d)); } \\ Harry J. Smith, May 13 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Aug 03 2002
Extended by Eric W. Weisstein using a computation of Keith Briggs, Jul 08 2003
Corrected errors in sequence using the b-file. - N. J. A. Sloane, Aug 30 2009
STATUS
approved