OFFSET
0,4
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,4).
FORMULA
a(n) = C(n, r+0)+C(n, r+4)+C(n, r+8)+... where r = 1 if n odd, r = 3 if n even.
a(n) = 2*a(n-2) + 4*a(n-3), n > 3. - Paul Curtz, Feb 06 2008
From Colin Barker, Aug 02 2019: (Start)
G.f.: x*(1 + x^2) / ((1 - 2*x)*(1 + 2*x + 2*x^2)).
a(n) = (2^n + i*((-1-i)^n - (-1+i)^n)) / 4 for n>0, where i=sqrt(-1).
(End)
MATHEMATICA
LinearRecurrence[{0, 2, 4}, {0, 1, 0, 3}, 40] (* Harvey P. Dale, Oct 15 2017 *)
PROG
(PARI) concat(0, Vec(x*(1 + x^2) / ((1 - 2*x)*(1 + 2*x + 2*x^2)) + O(x^40))) \\ Colin Barker, Aug 02 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved