OFFSET
1,1
COMMENTS
All terms are a product of at least two terms of A020450. - Michel Marcus, Oct 02 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A020450} p/(p-1) - Sum_{p in A020450} 1/p - 1 = 0.616325... - Amiram Eldar, Oct 14 2020
EXAMPLE
422 = 2 * 211 is in the sequence as the digits of its prime factors 2 and 211 are either 1 or 2. - David A. Corneth, Sep 26 2020
MATHEMATICA
Select[Range[2, 14650], !PrimeQ[#] && Complement[Flatten[IntegerDigits[First/@FactorInteger[#]]], {1, 2}]=={} &] (* Jayanta Basu, May 25 2013 *)
PROG
(Magma) [k:k in [2..15000]| not IsPrime(k) and forall{a: a in PrimeDivisors(k)|Intseq(a) subset {1, 2}}]; // Marius A. Burtea, Oct 08 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Dec 15 1998
STATUS
approved