[go: up one dir, main page]

login
A036299
Binary Fibonacci (or rabbit) sequence.
11
1, 10, 101, 10110, 10110101, 1011010110110, 101101011011010110101, 1011010110110101101011011010110110, 1011010110110101101011011010110110101101011011010110101
OFFSET
0,2
COMMENTS
A055642(a(n)) = A000045(n+2). - Reinhard Zumkeller, Jul 06 2014
REFERENCES
N. G. De Bruijn, (1989, January). Updown generation of Beatty sequences. Koninklijke Nederlandsche Akademie van Wetenschappen (Indationes Math.), Proc., Ser. A, 92:4 (1968), 385-407. See Fig. 3.
J. Kappraff, D. Blackmore and G. Adamson, Phyllotaxis as a dynamical system: a study in number, Chap. 17 of Jean and Barabe, eds., Symmetry in Plants, World Scientific, Studies in Math. Biology and Medicine, Vol. 4.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..14
M. S. El Naschie, Statistical geometry of a Cantor discretum and semiconductors, Computers Math. Applic., 29 (No, 12, 1995), 103-110.
C. J. Glasby, S. P. Glasby and F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
FORMULA
a(n+1) = concatenation of a(n) and a(n-1).
MATHEMATICA
nxt[{a_, b_}]:=FromDigits[Join[IntegerDigits[b], IntegerDigits[a]]]; Transpose[NestList[{Last[#], nxt[#]}&, {1, 10}, 10]][[1]] (* Harvey P. Dale, Oct 16 2011 *)
PROG
(Haskell)
a036299 n = a036299_list !! n
a036299_list = map read rabbits :: [Integer] where
rabbits = "1" : "10" : zipWith (++) (tail rabbits) rabbits
-- Reinhard Zumkeller, Jul 06 2014
(Python)
def aupton(terms):
alst = [1, 10]
while len(alst) < terms: alst.append(int(str(alst[-1]) + str(alst[-2])))
return alst[:terms]
print(aupton(9)) # Michael S. Branicky, Jan 10 2021
CROSSREFS
Column k=10 of A144287.
Sequence in context: A324083 A162849 A041182 * A061107 A015498 A266283
KEYWORD
nonn,easy,nice,base
STATUS
approved